首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Numerical and analytical results are presented for fluid sloshing, of a two-layer inviscid, incompressible and immiscible fluid with thin layers and a rigid lid, coupled to a vessel which is free to undergo horizontal motion governed by a nonlinear spring. Exact analytical results are obtained for the linear problem, giving the natural frequencies and the resonance structure, particularly between the fluid and vessel. A numerical method for the linear and nonlinear equations is developed based on the high-resolution f-wave-propagation finite volume methods due to Bale et al. (2002) [SIAM Journal on Scientific Computing 24, 955–978], adapted to include the pressure gradient at the rigid-lid, and coupled to a Runge–Kutta solver for the vessel motion. The numerical simulations in the linear limit are compared with the exact analytical solutions. The coupled nonlinear numerical solutions with simulations near the internal 1:1 resonance are presented. Of particular interest is the partition of energy between the vessel and fluid motion.  相似文献   

2.
李晓玉  岳宝增 《力学学报》2019,51(5):1448-1454
以充液航天器为工程背景,借助多尺度方法研究刚--液耦合动力学系统非线性动力学特性.利用多维模态方法,将描述横向外激励下圆柱贮箱中液体非线性晃动的自由边界问题转换为液体模态系数相互耦合的有限维非线性常微分方程组.推导液体晃动产生的作用于贮箱壁的晃动力和晃动力矩的解析表达式,进而建立航天器刚体部分平动和液体晃动耦合的非线性动力学方程组.应用多尺度方法对刚--液耦合系统的动力学特性进行解析分析,通过固有频率的特征方程求解耦合系统固有频率,推导外激励频率接近耦合系统第一阶固有频率时液体晃动稳态解的幅值频率响应方程.结合数值方法,研究了液体晃动稳态解的幅值频率响应曲线和激励--幅值响应曲线.结果表明, 随充液比变化,液体晃动稳态解的幅值频率响应曲线会发生软、硬弹簧特性转换现象和"跳跃"现象;幅值频率响应曲线的软、硬弹簧特性转换点受重力加速度和弹簧刚度系数影响;以上所得研究结果表明,考虑非线性效应时的刚--液耦合系统动力学特性与传统的线性系统模型所显示的动力学特性具有本质区别.本文的研究工作对进一步分析充液航天器刚--液耦合非线性动力学特性具有重要参考价值.   相似文献   

3.
hing dynamics in a square tank are numerically investigated when the tank is subjected to horizontal, narrowband random ground excitation. The natural frequencies of the two predominant sloshing modes are identical and therefore 1:1 internal resonance may occur. Galerkin’s method is applied to derive the modal equations of motion for nonlinear sloshing including higher modes. The Monte Carlo simulation is used to calculate response statistics such as mean square values and probability density functions (PDFs). The two predominant modes exhibit complex phenomena including “autoparametric interaction” because they are nonlinearly coupled with each other. The mean square responses of these two modes and the liquid elevation are found to differ significantly from those of the corresponding linear model, depending on the characteristics of the random ground excitation such as bandwidth, center frequency and excitation direction. It is found that the direction of the excitation is a significant factor in predicting the mean square responses. The frequency response curves for the same system subjected to equivalent harmonic excitation are also calculated and compared with the mean square responses to further explain the phenomena. Changing the liquid level causes the peak of the mean square response to shift. Furthermore, the risk of the liquid overspill from the tank is discussed by showing the three-dimensional distribution charts of the mean square responses of liquid elevations.  相似文献   

4.

In this paper, a nonlinear reduced-order model based on neural networks is introduced in order to model vertical sloshing in presence of Rayleigh–Taylor instability of the free surface for use in fluid–structure interaction simulations. A box partially filled with water, representative of a wing tank, is first set on vertical harmonic motion via a controlled electrodynamic shaker. Accelerometers and load cells at the interface between the tank and an electrodynamic shaker are employed to train a neural network-based reduced-order model for vertical sloshing. The model is then investigated for its capacity to consistently simulate the amount of dissipation associated with vertical sloshing under different fluid dynamics regimes. The identified tank is then experimentally attached at the free end of a cantilever beam to test the effectiveness of the neural network in predicting the sloshing forces when coupled with the overall structure. The experimental free response and random seismic excitation responses are then compared with that obtained by simulating an equivalent virtual model in which the identified nonlinear reduced-order model is integrated to account for the effects of violent vertical sloshing.

  相似文献   

5.
A linear oscillator (LO) coupled with two vibro-impact (VI) nonlinear energy sinks (NES) in parallel is studied under periodic and transient excitations, respectively. The objective is to study response regimes and to compare their efficiency of vibration control. Through the analytical study with multiple scales method, two slow invariant manifolds (SIM) are obtained for two VI NES, and different SIM that result from different clearances analytically supports the principle of separate activation. In addition, fixed points are calculated and their positions are applied to judge response regimes. Transient responses and modulated responses can be further explained. By this way, all analysis is around the most efficient response regime. Then, numerical results demonstrate two typical responses and validate the effectiveness of analytical prediction. Finally, basic response regimes are experimentally observed and analyzed, and they can well explain the complicated variation of responses and their corresponding efficiency, not only for periodic excitations with a fixed frequency or a range of frequency, but also for transient excitation. Generally, vibration control is more effective when VI NES is activated with two impacts per cycle, whatever the types of excitation and the combinations of clearances. This observation is also well reflected by the separate activation of two VI NES with two different clearances, but at different levels of displacement amplitude of LO.  相似文献   

6.
7.
基于非线性波动理论模型,求解储液容器内液体晃动的固有频率、模态及动力学响应问题。流体使用us-up状态方程,利用ABAQUS软件的自适应网格技术,建立储液容器液体晃动数学模型,通过施加水平简谐激励得到液体晃动的固有频率和模态,并与解析解对比,验证了该方法的准确性与可行性。然后,分析了矩形储液容器在多种激励作用下液体非线性晃动响应特性。  相似文献   

8.
Tuned liquid dampers (TLDs) utilize sloshing fluid to absorb and dissipate structural vibrational energy. TLDs of irregular or complex tank geometry may be required in practice to avoid tank interference with fixed structural or mechanical components. The literature offers few analytical models to predict the response of this type of TLD, particularly when the fluid depth is small. In this paper, a multimodal model is developed utilizing a Boussinesq-type modal theory which is valid for small TLD fluid depths. The Bateman–Luke variational principle is employed to develop a system of coupled nonlinear ordinary differential equations which describe the fluid response when the tank is subjected to base excitation. Energy dissipation is incorporated into the model from the inclusion of damping screens. The fluid model is used to describe the response of a 2D structure–TLD system when the structure is subjected to external loading and the TLD tank geometry is irregular.Shake table experiments are conducted on a rectangular and chamfered tank subjected to unidirectional base excitation. Comparisons of the experimental and predicted sloshing forces and energy dissipation per cycle indicate that the model is able to predict the fluid response at fluid depth ratios greater than h/L=0.10. Next, structure–TLD system tests are conducted and it is found that the model can predict the structural and TLD responses. The simulated and experimental results show that the TLD tank transfers energy between orthogonal structural sway modes.  相似文献   

9.
在低重力环境下,用变分原理建立了液体晃动的压力体积分形式的Lagrange函数,并将速度势函数在自由液面处作波高函数的级数展开,从而导出自由液面运动学和动力学边界条件非线性方程组;最后用四阶Runge-Kutta法求解非线性方程组。计算结果表明,随俯仰激励频率的逐渐变化,由于面外主模态和次生模态同时失稳,致使整个系统各阶模态和波高函数由稳态运动过渡为不稳定运动。  相似文献   

10.
Linear and nonlinear fluid sloshing problems in a circular conical tank are studied in a curvilinear coordinate system. The linear sloshing modes are approximated by a series of the solid spheric harmonics. These modes are used to derive a new nonlinear modal theory based on the Moiseyev asymptotics. The theory makes it possible to both classify steady-state waves occurring due to horizontal resonant excitation and visualise nonlinear wave patterns. Secondary (internal) resonances and shallow fluid sloshing (predicted for the semi-apex angles >60) are extensively discussed.  相似文献   

11.
The coupled motion between shallow-water sloshing in a moving vessel with variable cross-section and bottom topography, and the vessel dynamics is considered, with the vessel dynamics restricted to horizontal motion governed by a nonlinear spring. The coupled fluid and vessel equations in Eulerian coordinates are transformed to the Lagrangian particle path setting which leads to a formulation with nice properties for numerical simulation. In the Lagrangian representation, a simple and fast numerical algorithm based on the Störmer–Verlet method, is implemented. The numerical scheme conserves the total energy in the system, as well as giving the partition of energy between the fluid and vessel. Numerical simulations of the coupled nonlinear dynamics are presented.  相似文献   

12.
Suspending a rectangular vessel partially filled with an inviscid fluid from a single rigid pivoting rod produces an interesting physical model for investigating the dynamic coupling between the fluid and vessel motion. The fluid motion is governed by the Euler equations relative to the moving frame of the vessel, and the vessel motion is given by a modified forced pendulum equation. The fully nonlinear, two-dimensional, equations of motion are derived and linearised for small-amplitude vessel and free-surface motions, and the natural frequencies of the system analysed. It is found that the linear problem exhibits an unstable solution if the rod length is shorter than a critical length which depends on the length of the vessel, the fluid height and the ratio of the fluid and vessel masses. In addition, we identify the existence of 1:1 resonances in the system where the symmetric sloshing modes oscillate with the same frequency as the coupled fluid/vessel motion. The implications of instability and resonance on the nonlinear problem are also briefly discussed.  相似文献   

13.
In this paper, the three degrees-of-freedom motion of a two-dimensional rectangular liquid tank under wave action is simulated by the boundary element method in time domain. The coupling effects between tank motion and internal sloshing flow are investigated in partially filled conditions. The fourth-order Runge–Kutta method is adopted to update the wave shape and velocity potential on the free surface. The fully nonlinear mutual dependence of the incident wave, tank motion and internal sloshing flow is decoupled through an auxiliary function method, by which the liquid tank acceleration can be obtained directly without knowing the pressure distribution. The corresponding validation of numerical model is carried out and indicates that the accuracy of the present method is satisfactory to evaluate the dynamic responses of tank and sloshing motion. The corresponding response amplitude operators of tank motions for various wave frequencies, amplitudes and filling conditions are obtained, and the nonlinear coupling effects of sloshing flow on the tank responses are analyzed. It is found that the coupling effects have significant influence on sway and roll motion while have little impact on heave motion. The most important coupling effects on roll motion are the split of peak. In addition, due to the nonlinearity of sloshing flow, the roll motion amplitude is not linearly proportional to wave amplitude.  相似文献   

14.
The paper considers the problem of sloshing of incompressible fluid in a moving 2-D rectangular tank under horizontal and vertical excitation. The problem is solved in Lagrangian variables by applying two approaches. First, a third-order asymptotic solution for resonant sloshing with a dominant mode is derived using a recursive technique. Then, fully nonlinear set of equations in the material coordinates is solved numerically by employing a finite difference method. Both methods are applied to a problem of high amplitude resonant Faraday waves and the obtained results are compared with experimental data known from the literature and a good agreement between the results of the two methods and the empirical data is demonstrated.  相似文献   

15.
16.
俯仰运动圆柱贮箱中液体的非线性晃动   总被引:9,自引:3,他引:6  
首次对储仰运动圆柱贮箱中液体的有限幅值晃动问题进行了解析研究。首先建立了描述俯仰和/或偏航运动贮箱中液体晃动的非线性偏微分方程组,而后提出了相应的变分原理,建立了压力体积分形式的Lagrange函数,通过变分方程,最终得到措述俯仰和/或偏航运动圆柱贮箱中液体晃动的非线性动力学微分方程组,该动力学方程组自然满足液体自由表面的运动学和动力学办界条件。而后动用多尺度法求解了所得的动力学方程组,对非线性液  相似文献   

17.
杨旦旦  岳宝增 《力学与实践》2013,35(2):29-34,28
为了得到微重力下液体晃动的特性,晃动模态用具有水平静液面的液体晃动模态近似. 液体晃动取前5 个重要模态,用Lagrange 方程推导了横向力作用下液体晃动和航天器结构的无量纲的耦合动力学方程并进行数值模拟. 模拟了液体晃动模态随外力振幅和频率变化产生的分岔现象,并分析了系统参数,如Bond数、接触角、接触角迟滞、充液高度、频率比、质量比以及外力的周期形式和方向等对晃动模态的分岔的影响.  相似文献   

18.
本文综述了线性与非线性流固耦合问题数值方法的进展及工程应用. 讨论了四种数值分析方法: (1) 混合有限元-子结构-子区域数值模型, 以求解有限域线性流固耦合问题, 如流体晃动, 声腔-结构耦合, 流体中的压力波, 化工容器的地震响应,坝水耦合等; (2) 混合有限元-边界元数值模型, 以求解涉及无限域的线性流固耦合问题, 如大型浮体承受飞机降落冲击, 船舰的炮击回应等; (3) 混合有限元-有限差分(体积) 数值模型, 以求解不涉及破浪和两相分离的非线性流固耦合问题; (4) 混合有限元-光滑粒子数值模型, 以求解涉及破浪和两相分离的非线性流固耦合问题. 文中推荐分区迭代求解过程, 以便应用现有的固体及流体求解器, 于毎一时间步长分别求解固体及流体的方程, 通过耦合迭代收敛, 向前推进以达问题求解. 文中选用的工程应用例子包含气-液-壳三相耦合, 液化天然气船水晃动, 人体步行冲击引起的声腔-建筑结构耦合, 大型浮体承受飞机降落冲击的瞬态动力回应, 涉及破浪和两相分离的气-翼耦合及结构于水上降落的冲击. 数值分析结果与可用的实验或计算结果作了比较, 以说明所述方法的精度及工程应用价值. 文中列出了基于流固耦合的波能采积装置模型, 以应用线性系统的共振及非线性系统的周期解原理, 有效地采积波能. 本文列出了231 篇参考文献, 以便读者进一步研讨所感兴趣方法.  相似文献   

19.
邢景棠 《力学进展》2016,(1):95-139
本文综述了线性与非线性流固耦合问题数值方法的进展及工程应用。讨论了四种数值分析方法:(1)混合有限元–子结构–子区域数值模型,以求解有限域线性流固耦合问题,如流体晃动,声腔–结构耦合,流体中的压力波,化工容器的地震响应,坝水耦合等;(2)混合有限元–边界元数值模型,以求解涉及无限域的线性流固耦合问题,如大型浮体承受飞机降落冲击,船舰的炮击回应等;(3)混合有限元–有限差分(体积)数值模型,以求解不涉及破浪和两相分离的非线性流固耦合问题;(4)混合有限元–光滑粒子数值模型,以求解涉及破浪和两相分离的非线性流固耦合问题。文中推荐分区迭代求解过程,以便应用现有的固体及流体求解器,于毎一时间步长分别求解固体及流体的方程,通过耦合迭代收敛,向前推进以达问题求解。文中选用的工程应用例子包含气–液–壳三相耦合,液化天然气船水晃动,人体步行冲击引起的声腔–建筑结构耦合,大型浮体承受飞机降落冲击的瞬态动力回应,涉及破浪和两相分离的气–翼耦合及结构于水上降落的冲击。数值分析结果与可用的实验或计算结果作了比较,以说明所述方法的精度及工程应用价值。文中列出了基于流固耦合的波能采积装置模型,以应用线性系统的共振及非线性系统的周期解原理,有效地采积波能。本文列出了231篇参考文献,以便读者进一步研讨所感兴趣方法。  相似文献   

20.
The parametric excitation of an elevated water tower experiencing sloshing hydro-dynamic impact is studied using the multiple scales method. The liquid sloshing mass is replaced by a mechanical model in the form of a simple pendulum experiencing impacts with the tank walls. The impact loads are modeled based on a phenomenological representation in the form of a power function with a higher exponent. In this case the system equations of motion include impact nonlinearities (selected to be of fifth power) and cubic structural geometric nonlinearities. When the first mode is parametrically excited the system exhibits hard nonlinear behavior and the impact loading reduced the response amplitude. On the other hand, when the second mode is parametrically excited, the impact loading results in complex response behavior characterized by multiple steady state solutions, where the response switches from soft to hard nonlinear characteristics. Under combined parametric resonance, the system possesses a single steady-state response in the absence and in the presence of impact. However, the system behaves like a soft system in the absence of impact and like a hard system in the presence of impact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号