首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
This paper investigates the small- and large-amplitude vibrations of thermally postbuckled carbon nanotube-reinforced composite (CNTRC) beams resting on elastic foundations. For the CNTRC beams, uniformly distributed (UD) and functionally graded (FG) reinforcements are considered where the temperature-dependent material properties of CNRTC beams are assumed to be graded in the thickness direction and estimated through a micromechanical model. The motion equations are derived based on a higher order shear deformation beam theory with including the beam-foundation interaction. The initial deflection caused by thermal postbuckling is also included. The numerical illustrations concern small- and large-amplitude vibration characteristics of thermally postbuckled CNTRC beams under uniform temperature field. The effects of carbon nanotube (CNT) volume fraction and distribution patterns as well as foundation stiffness on the vibration characteristics of CNTRC beams are examined in detail.  相似文献   

2.
The buckling, postbuckling and postbuckled vibration behaviour of composite skew plates subjected to nonuniform inplane loadings are presented here. The skew plate is modelled using first order shear deformation theory accounting for von-Kármán geometric nonlinearity and initial geometric imperfections. The different types of nonuniform loads that have been considered in this study are concentrated load, partial load and parabolic load. The explicit analytical expressions for prebuckling stress distributions within composite skew plate subjected to three different types of nonuniform inplane loadings are developed by solving plane elasticity problem using Airy's stress function approach. It is observed that the inplane normal stress distributions within the skew plate due to above nonuniform loadings do not become uniform even at mid-section. The generalized differential quadrature (GDQ) method is used to solve the nonlinear governing partial differential equations. It is observed that the postbuckled load carrying capacity of skew plate under concentrated loading is the lowest compared to other nonuniform and uniform loadings.  相似文献   

3.
Kármán-type nonlinear large deflection equations are derived occnrding to the Reddy’s higher-order shear deformation plate theory and used in the thermal postbuckling analysis The effects of initial geometric imperfections of the plate areincluded in the present study which also includes th thermal effects.Simply supported,symmetric cross-ply laminated plates subjected to uniform or nomuniform parabolictemperature distribution are considered. The analysis uses a mixed GalerkinGolerkinperlurbation technique to determine thermal buckling louds and postbucklingequilibrium paths.The effects played by transverse shear deformation plate aspeclraio, total number of plies thermal load ratio and initial geometric imperfections arealso studied.  相似文献   

4.
A postbuckling analysis is presented for a shear deformable functionally graded cylindrical shell of finite length subjected to combined axial and radial loads in thermal environments. Heat conduction and temperature-dependent material properties are both taken into account. The temperature field considered is assumed to be a uniform distribution over the shell surface and varied in the thickness direction only. Material properties are assumed to be temperature-dependent, and graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. The formulations are based on a higher order shear deformation shell theory with von Kármán–Donnell-type of kinematic nonlinearity. A boundary layer theory of shell buckling, which includes the effects of nonlinear prebuckling deformations, large deflections in the postbuckling range, and initial geometric imperfections of the shell, is extended to the case of functionally graded cylindrical shells. A singular perturbation technique is employed to determine the interactive buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling response of perfect and imperfect cylindrical shells with two constituent materials subjected to combined axial and radial mechanical loads and under different sets of thermal environments. The results reveal that the temperature field and volume fraction distribution have a significant effect on the postbuckling behavior, but they have a small effect on the imperfection sensitivity of the functionally graded shell.  相似文献   

5.
The nonlinear analysis with an analytical approach on dynamic torsional buckling of stiffened functionally graded thin toroidal shell segments is investigated. The shell is reinforced by inside stiffeners and surrounded by elastic foundations in a thermal environment and under a time-dependent torsional load. The governing equations are derived based on the Donnell shell theory with the von K′arm′an geometrical nonlinearity,the Stein and McE lman assumption, the smeared stiffeners technique, and the Galerkin method. A deflection function with three terms is chosen. The thermal parameters of the uniform temperature rise and nonlinear temperature conduction law are found in an explicit form. A closed-form expression for determining the static critical torsional load is obtained. A critical dynamic torsional load is found by the fourth-order Runge-Kutta method and the Budiansky-Roth criterion. The effects of stiffeners, foundations, material,and dimensional parameters on dynamic responses of shells are considered.  相似文献   

6.
Governing non-linear integro-differential equations for cylindrically orthotropic shallow spherical shells resting on linear Winkler-Pasternak elastic foundations, undergoing moderately large deformations are presented. Three problems, namely, non-linear static deflection response, non-linear dynamic deflection response and dynamic snap-through buckling of orthotropic shells have been investigated. The influences of material orthotropy, foundation parameters and shell-material damping on the deflection response are determined for the clamped and the simply- supported immovable edge conditions accurately. Orthotropy, foundation interaction and material damping play significant roles in improving the load carrying capacity of the shell structures.  相似文献   

7.
A non-linear finite element formulation (three dimensional continuum elements) is implemented and used for modeling dynamic snap-through in beams with initial curvature. We identify a non-trivial (non-flat) configuration of the beam at a critical temperature value below which the beam will no longer experience snap-through under any magnitude of applied quasi-static load for beams with various curvatures. The critical temperature is shown to successfully eliminate snap-through in dynamic simulations at quasistatic loading rates. Thermomechanical coupling is included in order to model a physically minimal amount of damping in the system, and the resulting post-snap vibrations are shown to be thermoelastically damped. We propose a test to determine the critical snap-free temperature for members of general geometry and loading pattern; the analogy between mechanical prestress and thermal strain that holds between the static and dynamic simulations is used to suggest a simple method for reducing the vulnerability of thin-walled structural members to dynamic snap-through in members of large initial curvature via the introduction of initial pretension.  相似文献   

8.
The instability of functionally graded material (FGM) structures is one of the major threats to their service safety in engineering applications. This paper aims to clarify a long-standing controversy on the thermal instability type of simply-supported FGM beams. First, based on the Euler-Bernoulli beam theory and von Kármán geometric nonlinearity, a nonlinear governing equation of simply-supported FGM beams under uniform thermal loads by Zhang's two-variable method is formulated. Second, an approximate analytic solution to the nonlinear integro-differential boundary value problem under a thermal-induced inhomogeneous force boundary condition is obtained by using a semiinverse method when the coordinate axis is relocated to the bending axis (physical neutral plane), and then the analytical predictions are verified by the differential quadrature method (DQM). Finally, based on the free energy theorem, it is revealed that the symmetry breaking caused by the material inhomogeneity can make the simply-supported FGM beam under uniform thermal loads occur snap-through postbuckling only in odd modes; furthermore, the nonlinear critical load of thermal buckling varies non-monotonically with the functional gradient index due to the stretching-bending coupling effect. These results are expected to provide new ideas and references for the design and regulation of FGM structures.  相似文献   

9.
Free vibration of statically thermal postbuckled functionally graded material (FGM) beams with surface-bonded piezoelectric layers subject to both temperature rise and voltage is studied. By accurately considering the axial extension and based on the Euler-Bernoulli beam theory, geometrically nonlinear dynamic governing equations for FGM beams with surface-bonded piezoelectric layers subject to thermo-electro- mechanical loadings are formulated. It is assumed that the material properties of the middle FGM layer vary continuously as a power law function of the thickness coordinate, and the piezoelectric layers are isotropic and homogenous. By assuming that the amplitude of the beam vibration is small and its response is harmonic, the above mentioned non-linear partial differential equations are reduced to two sets of coupled ordinary differential equations. One is for the postbuckling, and the other is for the linear vibration of the beam superimposed upon the postbuckled configuration. Using a shooting method to solve the two sets of ordinary differential equations with fixed-fixed boundary conditions numerically, the response of postbuckling and free vibration in the vicinity of the postbuckled configuration of the beam with fixed-fixed ends and subject to transversely nonuniform heating and uniform electric field is obtained. Thermo-electric postbuckling equilibrium paths and characteristic curves of the first three natural frequencies versus the temperature, the electricity, and the material gradient parameters are plotted. It is found that the three lowest frequencies of the prebuckled beam decrease with the increase of the temperature, but those of a buckled beam increase monotonically with the temperature rise. The results also show that the tensional force produced in the piezoelectric layers by the voltage can efficiently increase the critical buckling temperature and the natural frequency.  相似文献   

10.
Shen  Hui-Shen  Xiang  Y. 《Meccanica》2019,54(1-2):283-297

Thermal postbuckling analysis is presented for graphene-reinforced composite (GRC) laminated cylindrical shells under a uniform temperature field. The GRC layers are arranged in a functionally graded (FG) graphene reinforcement pattern by varying the graphene volume fraction in each GRC layer. The GRCs possess temperature dependent and anisotropic material properties and the extended Halpin–Tsai model is employed to evaluate the GRC material properties. The governing equations are based on a higher order shear deformation shell theory and include the von Kármán-type kinematic nonlinearity and the thermal effects. A singular perturbation method in conjunction with a two-step perturbation approach is applied to determine the thermal postbuckling equilibrium path for a GRC shell with or without geometric imperfection. An iterative scheme is developed to obtain numerical thermal buckling temperatures and thermal postbuckling load–deflection curves for the shells. The results reveal that the FG-X piece-wise FG graphene distribution can enhance the thermal postbuckling capacity of the shells when the shells are subjected to a uniform temperature loading.

  相似文献   

11.
非线性弹性基础上矩形板热后屈曲分析   总被引:1,自引:0,他引:1  
给出非线性弹性基础上矩形板在均匀和非均匀(抛物型)热分布作用下的后屈曲分析。采用摄动——Galerkin混合法给出完善和非完善矩形板热屈曲载荷和热后屈曲平衡路径。数值计算结果表明,非线性弹性基础上矩形板具有不稳定的热后屈曲平衡路径,且对初始几何缺陷是敏感的  相似文献   

12.
This paper presents a study on the postbuckling responses of shear deformable laminated plates resting on a tensionless foundation of the Pasternak-type and subjected to combined axial and thermal loads. Two different postbuckling cases are considered, namely (1) the compressive postbuckling of initially heated plates and (2) the thermal postbuckling of initially compressed plates. The postbuckling analysis of laminated plates is based on the higher order shear deformation plate theory with a von Kármán-type of kinematic non-linearity. It is assumed that the foundation reacts in compression only. The thermal effects are also included and the material properties are assumed to be temperature dependent. The initial geometric imperfection of the plates is taken into account. The analysis uses a two-step perturbation technique to determine the postbuckling response of the plates. An iterative scheme is developed to obtain numerical results without using any assumption on the shape of the contact region. Numerical solutions are presented in tabular and graphical forms to study the postbuckling behavior of antisymmetric angle-ply and symmetric cross-ply laminated plates resting on tensionless elastic foundations of the Pasternak-type, from which results for conventional elastic foundations are obtained as comparators. The results reveal that the unilateral constraint has a significant effect on the postbuckling response of the plates subjected to combined axial and thermal loads when the foundation stiffness is sufficiently large. The results also confirm that the postbuckling responses are significantly influenced by temperature dependency and initial membrane stress as well as initial thermal stress.  相似文献   

13.
Buckling and postbuckling analysis is presented for a double-walled carbon nanotube subjected to combined axial and radial loads in thermal environments. The analysis is based on a continuum mechanics model in which each tube of a double-walled carbon nanotube is described as an individual orthotropic shell with presence of van der Waals interaction forces and the interlayer friction is negligible between the inner and outer tubes. The governing equations are based on higher order shear deformation shell theory with a von Kármán-Donnell-type of kinematic nonlinearity and include thermal effects. Temperature-dependent material properties, which come from molecular dynamics simulations, and initial point defect, which is simulated as a dimple on the tube wall, are both taken into account. A singular perturbation technique is employed to determine the interactive buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling response of perfect and imperfect, double-walled carbon nanotubes subjected to combined axial and radial mechanical loads under different sets of thermal environments. The results reveal that temperature change only has a small effect on the postbuckling behavior of the double-walled carbon nanotube. The axially-loaded double-walled carbon nanotube subjected to radial pressure has an unstable postbuckling path, and the structure is imperfection–sensitive. In contrast, the pressure-loaded double-walled carbon nanotube subjected to axial compression has a very weak “snap-through” postbuckling path, and the structure is virtually imperfection–insensitive.  相似文献   

14.
This paper deals with the non-linear response of sandwich curved panels exposed to thermomechanical loadings. The mechanical loads consist of compressive/tensile edge loads, and a lateral pressure while the temperature field is assumed to exhibit a linear variation through the thickness of the panel. Towards obtaining the equations governing the postbuckling response, the Extended Galerkin’s Method is used. The numerical illustrations concern doubly curved, circular cylindrical and as a special case, flat panels, all the edges being simply supported. Moveable and immoveable tangential boundary conditions in the directions normal to the edges are considered and their implications upon the thermomechanical load-carrying capacity are emphasized. Effects of the radii of curvature and of initial geometric imperfections on the load-carrying capacity of sandwich panels are also considered and their influence upon the intensity of the snap-through buckling are discussed. It is shown that in special cases involving the thermomechanical loading and initial geometric imperfection, the snap-through phenomenon can occur also in the case of flat sandwich panels.  相似文献   

15.
A thermal postbuckling analysis is presented for a moderately thick rectangular plate subjected to (1) uniform and non-uniform tent-like temperature loading; and (2) combined axial compression and uniform temperature loading. The initial geometrical imperfection of plate is taken into account. The formulations are based on the Reissner-Mindlin plate theory considering the effects of rotary inertia and transverse shear deformation. The analysis uses a deflection-type perturbation technique to determine the thermal buckling loads and postbuckling equilibrium paths. Numerical examples are presented that relate to the performances of perfect and imperfect, moderately thick rectangular plates and are compared with the results predicted by the thin plate theory.  相似文献   

16.
In this paper, we analyze dynamic behavior of a piezothermoelastic laminate considering the effect of damping due to interlaminar shear and the effect of transverse shear. The analytical model is a rectangular laminate composed of fiber-reinforced laminae and piezoelectric layers. The model is assumed to be a symmetric cross-ply laminate with all egdes simply supported and to be subjected to mechanical, thermal and electrical loads varying arbitrarily with time. Behavior of the laminate is analyzed based on the first-order shear deformation theory. The effect of damping due to interlaminar shear is incorporated into our analysis by introducing the interlaminar shear stresses which satisfy the Newton’s law of viscosity. Solutions of the following quantities are obtained: (1) natural frequencies of the laminate, (2) weight functions for the deflection and rotations and (3) unsteady deflection due to loads varying arbitrarily with time. Moreover, numerical examples of the solutions are shown to examine the effects of damping and transverse shear on dynamic behavior of the laminate and how the voltage applied to the laminate decreases the deflection due to mechanical or thermal loads.  相似文献   

17.
包海军  胡宇达 《力学季刊》2020,41(4):728-738
在考虑热因素及旋转运动条件下,针对金属-陶瓷功能梯度圆板的固有振动问题进行研究.给出随温度变化且材料组分沿厚度方向按幂律分布的材料物性参数,依据热弹性理论得到圆板的能量关系式.基于哈密顿原理建立旋转金属-陶瓷功能梯度圆板热弹性动力学方程.采用伽辽金法得到边界约束下圆板的自由振动方程,确定了静挠度及固有振动频率.基于数值计算,得到系统固有频率值随体积分数指数、转速和温度等参量的变化曲线,讨论了静挠度变化规律及动力系统的奇点稳定性问题.结果表明,固有频率随体积分数指数、材料表面温度以及转速的增加而减小.  相似文献   

18.
This paper investigates the non-linear in-plane buckling of pin-ended shallow circular arches with elastic end rotational restraints under a central concentrated load. A virtual work method is used to establish both the non-linear equilibrium equations and the buckling equilibrium equations. Analytical solutions for the non-linear in-plane symmetric snap-through and antisymmetric bifurcation buckling loads are obtained. It is found that the effects of the stiffness of the end rotational restraints on the buckling loads, and on the buckling and postbuckling behaviour of arches, are significant. The buckling loads increase with an increase of the stiffness of the rotational restraints. The values of the arch slenderness that delineate its snap-through and bifurcation buckling modes, and that define the conditions of buckling and of no buckling for the arch, increase with an increase of the stiffness of the rotational end restraints.  相似文献   

19.
IntroductionCompositelaminatedcylindricalpanelhasbeenusedextensivelyasastructuralconfiguration,mainlyintheaerospaceindustry .Oneoftherecentadvancesinmaterialandstructuralengineeringisinthefieldofsmartstructureswhichincorporatesadaptivematerials.Bytakingadvantageofthedirectandconversepiezoelectriceffects,piezoelectriccompositestructurescancombinethetraditionalperformanceadvantagesofcompositelaminatesalongwiththeinherentcapabilityofpiezoelectricmaterialstoadapttotheircurrentenvironment.Therefore…  相似文献   

20.
This paper deals with the determination of temperature distribution and thermal deflection function of a thin circular plate with the stated conditions. The transient heat conduction equation is solved by using Marchi-Zgrablich transform and Laplace transform simultaneously and the results of temperature distribution and thermal deflection function are obtained in terms of infinite series of Bessel function and it is solved for special case by using Mathcad 2007 software and represented graphically by using Microsoft excel 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号