首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The development and optimization of analytical methods for the better monitoring of disinfection by-products especially haloacetic acids in water are key step in order to estimate human exposure to such products after chlorination. A reliable and accurate analytical method is needed in order to reach the levels of concentration required by United States Environmental Protection Agency regulations. In this study a method was developed for determining halogenated acetic acids in drinking water, involving solid phase extraction, methylation derivatization, and GC-MS. The new SPE-GC-MS-SIM method is capable of analyzing all nine acids at extremely low μg L–1 level. Run time is significantly reduced without compromising analytical results. The major advantages of the method are the simplicity of the chromatography, short run time and low detection limits. The method performance, limits of detection and spiking recovery were evaluated and the results proved that the accuracy and precision were good. This method outperforms previous GC-MS methods especially for the determination of dibromoacetic, dibromochloroacetic, dichlorobromoacetic and tribromoacetic acids. The method has been used to analyse domestic tap water and water samples collected at a local water treatment plant.  相似文献   

2.
Quantification of trace concentrations of transformation products of rocket fuel unsymmetrical dimethylhydrazine (UDMH) in water requires complex analytical instrumentation and tedious sample preparation. The goal of this research was to develop a simple and automated method for sensitive quantification of UDMH transformation products in water using headspace (HS) solid-phase microextraction (SPME) in combination with GC-MS and GC-MS/MS. HS SPME is based on extraction of analytes from a gas phase above samples by a micro polymer coating followed by a thermal desorption of analytes in a GC inlet. Extraction by 85 µm Carboxen/polydimethylsiloxane fiber at 50 °C during 60 min provides the best combination of sensitivity and precision. Tandem mass spectrometric detection with positive chemical ionization improves method accuracy and selectivity. Detection limits of twelve analytes by GC-MS/MS with chemical ionization are about 10 ng L?1. GC-MS provides similar detection limits for five studied analytes; however, the list of analytes detected by this method can be further expanded. Accuracies determined by GC-MS were in the range of 75–125% for six analytes. Compared to other available methods based on non-SPME sample preparation approaches (e.g., liquid–liquid and solid-phase extraction), the developed method is simpler, automated and provides lower detection limits. It covers more UDMH transformation products than available SPME-based methods. The list of analytes could be further expanded if new standards become available. The developed method is recommended for assessing water quality in the territories affected by space activities and other related studies.  相似文献   

3.
Abstract

An analytical procedure utilizing solid phase extraction with octadecylsilane bonded to silica (C18) cartridges combined with gas chromatography/mass spectrometry (GC/MS) was developed to analyze semi-volatile chlorinated acids found in drinking water. A system has been designed which will enable the analysis of this class of compounds with minimum sample manipulation and detection limits in the low ng/L range. The overall accuracy and precision were comparable to other methods used for compliance purposes. Among the advantages of the developed methodology are its applicability for field sampling and at the same time, provides a simple and inexpensive mean for sample preservation.  相似文献   

4.
Immunoanalytical methods at a very low limit of detection (LOD) and a low limit of quantification (LOQ) are becoming more and more important for environmental analysis and especially for monitoring drinking water quality. Biosensors have suitable characteristics such as efficiency in allowing very fast, sensitive, and cost-effective detection. Here we describe a fully automated immunoassay for estrone with a LOD below 0.20 ng L–1 and a LOQ below 1.40 ng L–1. In contrast to common analytical methods such as GC-MS or HPLC-MS, the biosensor used requires no sample pre-treatment and pre-concentration. The basis of our sensitive assay is the antibody with a high affinity constant towards estrone. The very low amount of antibody per sample results in low validation parameters (LOD, LOQ, and IC50), but this assay for estrone represents the current device-related limitation of the River Analyser (RIANA).  相似文献   

5.
The widely-used pesticide propanil is a selective post-emergent general-use acetanilide herbicide registered for control of broadleaf and grass weeds in rice, small grain, and turf. Because broad application and quite heavy use of this herbicide lead to contaminated sites and, consequently, contaminated water, immunoanalytical methods with very low limits of detection (LOD) and low limits of quantification (LOQ) are becoming increasingly important for environmental analysis and, especially, for monitoring drinking-water quality. Environmental monitoring of pesticides, hormones, endocrine-disrupting chemicals, and antibiotics in aqueous samples (e.g. surface, ground, waste, or drinking water) with quite difficult matrices places large demands on chemical analysis. Biosensors have suitable characteristics such as efficiency in enabling very fast, sensitive, and cost-effective detection. Here we describe the steps of progress toward sub-nanogram per liter detection of propanil with a fully automated immunoassay. In contrast with common analytical methods such as GC–MS or HPLC–MS the biosensor used requires no sample pre-treatment and pre-concentration. The basis of our sensitive assay is an antibody with a high affinity constant toward propanil. During the optimization process, we compared different surface modifications (four different immobilized derivatives) and reduced the amount of antibody per sample. In fact, optimization of the assay resulted in an LOD of 0.6 ng L–1 and an LOQ of 4.5 ng L–1 without any sample pre-treatment and without pre-concentration. These results for propanil with the RIANA instrument, and its improved sensitivity for detection of a single pesticide at the low nanogram per liter range, show that biosensors can compete with common analytical methods in the field of water analysis.  相似文献   

6.
The monitoring of organochlorine pesticides has raised a great concern in the last years due to their toxicity (some of them are carcinogenic and endocrine disruptor compounds) and persistence. European Directive 2008/105/EC establishes very restrictive levels for organochlorine pesticides in surface waters. Therefore, simple, fast, highly sensitive and low cost analytical methods are required to detect and quantify these pollutants in water. In the present work, four procedures for extraction and determination are proposed and compared for the analysis of 28 organochlorine pesticides in tap, surface and sea waters. The suitability of each method of analysis was evaluated for each kind of water. The extraction methods proposed were: two solid-phase extraction methods using C18 laminar disk and Oasis HLB cartridges, a solid-phase microextraction procedure using a polydimethylsiloxane/divinylbenzene (PDMS/DVB) fibre, and a micro liquid–liquid extraction procedure using ethyl acetate as solvent. Determination of pesticides was performed by large volume on-column injector-gas chromatography-electron capture detection (LVOCI-GC-ECD), splitless-GC-ECD and GC-MS (mass spectrometry). All methods present a good sensitivity with method detection limits lower than 10?ng?L?1, good accuracy with recoveries between 75 and 120% (with some exceptions) and good precision (relative standard deviations <15%), according to the Commission Decision 2002/657/EC criteria. The advantages and disadvantages of each method are discussed in terms of the green chemistry principles, the figures of merit and the matrix effect. This work tries to be a useful guidance for routine and control analysis laboratories.  相似文献   

7.
《Analytical letters》2012,45(10):1785-1801
Abstract

We have developed an analytical method to determine six sulfophenyl carboxylic acids (SPC) in agricultural groundwater samples. It involves a solid-phase extraction (SPE) procedure and subsequent separation and determination using liquid chromatography with fluorescence detection (LC–FD).The quantification limits ranged between 0.7 and 1.2 ng ml?1. The proposed method was proved satisfactorily for the detection and determination of these compounds in groundwater samples during a study into the biodegradation of linear alkylbenzene sulfonates (LAS) in an agricultural soil sampled from the irrigated plain to the west of Granada (Spain).  相似文献   

8.
Breath analysis constitutes a promising tool in clinical and analytical fields due to its high potential for non-invasive diagnostics of metabolic disorders and monitoring of disease status. An optical fiber (OF) sensor has been developed for determination of volatile organic compounds (ethane, pentane, heptane, octane, decane, benzene, toluene and styrene) in human breath for clinical diagnosis.The analytical system developed showed a high performance for breath analysis, inferred for the analytical signal intensity and stability, linear range, and detection limits ranging from 0.8 pmol L−1, for heptane, and to 9.5 pmol L−1, for decane. The OF sensor also showed advantageous features of near real-time response and low instrumentation costs, besides showing an analytical performance equivalent to the breath analysis by gas chromatography-mass spectrometry (GC-MS), used as the reference method.  相似文献   

9.
We report fast, precise, selective, and sensitive electroanalytical methods for the determination of ciprofloxacin in milk and pharmaceutical samples by batch‐injection analysis with amperometric detection (BIA‐AMP) and by capillary electrophoresis with capacitively‐coupled contactless conductivity detection (CE‐C4D). Both methods required simple sample preparation protocols before analysis (milk samples were just diluted and tablets powdered and dissolved in electrolyte/water). The analytical features of BIA‐AMP and CE‐C4D methods include, respectively, low relative standard deviation values for repetitive measurements (2.8 % and 1.7 %, n=10), low detection limits (0.3 and 5.0 µmol L?1), elevated analytical frequency (80 and 120 h?1) and satisfactory accuracy (based on comparative determinations by HPLC and recovery values for spiked samples).  相似文献   

10.
A very simple and quick analytical method, based on direct aqueous injection, for determination of halogenated solvents in refinery water and wastewater, is described. There is a need to determine halogenated solvents in refinery water streams, because they may originate from several processes. There is also a need to develop methods enabling VOX to be determined in samples containing oil fractions. The method described enables simultaneous determination of 26 compounds with low detection limits (sub-μg L−1) and excellent precision, especially for highly halogenated solvents. The matrix effects of four types of sample were evaluated—the method seemed to be relatively insensitive to variations in matrix composition. Deuterated 1,2-dichloroethane was used as internal standard and surrogate compound in quantitative analysis; application of isotopically labelled compounds is rarely reported when non-mass spectrometric detectors are used for analysis. Analysis of real samples showed that the most frequently detected compounds were dichloromethane and 1,2-dichloroethane.  相似文献   

11.
Abstract

The applicability of a recently developed capillary zone electrophoretic (CZE) method for the determination of low molecular weight (LMW) organic acids in water was tested on five types of environmental samples (rainwater, water extract from peat, and soil water from two polluted sites). A full baseline resolved separation of fourteen commonly found LMW carboxylic acids in natural waters (malonic, oxalic, fumaric, maleic, formic, succinic, tartaric, glutaric, adipic, acetic, propionic, butyric, valeric and citric acids), was achieved within eight minutes. The limits of detection (2 X noise) were in the ranges 90–200 μg/l and 0.5 – 5 μg/l for hydrodynamic and electrokinetic injection, respectively. Two different CZE systems, a Waters Quanta 4000 and a Hewlett Packard HP 3DCE system, were used and their performance compared.  相似文献   

12.
This paper explores the analytical figures of merit of two‐dimensional high‐performance liquid chromatography for the separation of antioxidant standards. The cumulative two‐dimensional high‐performance liquid chromatography peak area was calculated for 11 antioxidants by two different methods—the areas reported by the control software and by fitting the data with a Gaussian model; these methods were evaluated for precision and sensitivity. Both methods demonstrated excellent precision in regards to retention time in the second dimension (%RSD below 1.16%) and cumulative second dimension peak area (%RSD below 3.73% from the instrument software and 5.87% for the Gaussian method). Combining areas reported by the high‐performance liquid chromatographic control software displayed superior limits of detection, in the order of 1 × 10?6 M, almost an order of magnitude lower than the Gaussian method for some analytes. The introduction of the countergradient eliminated the strong solvent mismatch between dimensions, leading to a much improved peak shape and better detection limits for quantification.  相似文献   

13.
Investigation into persistent organic pollutants (POPs) in sea turtles is an important area of conservation research due to the harmful effects of these chemicals. However, the analysis of POPs in the green sea turtle (Chelonia mydas) has been limited by methods with relatively high limits of detection and high costs associated with multiple sample injections into complex arrangements of analytical equipment. The present study aimed to develop a method that could detect a large number of POPs in the blood, eggs and tissue of C. mydas at trace concentrations. A gas chromatography with tandem mass spectrometry (GC-MS/MS) method was developed that could report 125 POP compounds to a limit of detection of <35 pg g?1 using a single sample injection. The recoveries of internal standards ranged from 30% to 96%, and the standard reference materials were reported to within 70% of the certified values. The coefficient of variation of ten replicates of pooled egg sample was <20% for all compounds, indicating low within-run variation. This GC-MS/MS method is an improvement of previous methods for analysing POPs in C. mydas in that more compounds can be reported at lower concentrations and the accuracy and precision of the method are sound. This is particularly important for C. mydas as they occupy a low trophic level and have lower concentrations of POPs. This method is also simple to set up, and there are minimal differences in sample preparation for the different tissue types.  相似文献   

14.
《Analytical letters》2012,45(7):1463-1474
Abstract

Current methods for the analysis of explosives in soils utilize time consuming sample preparation workups and extractions. The method detection limits for EPA Method 8330 for most analytes is substantially higher than the typical explosive concentrations encountered in soils near unexploded ordnance items, landmines, or other hidden explosive devices. It is desirable to develop new analytical techniques to analyze soil with low concentrations of explosives to support the development of explosive sensors. This report describes efforts to adapt headspace solid phase extraction and gas chromatography/mass spectrometry to provide a convenient and sensitive analysis method for explosives in soil.  相似文献   

15.
A new method, stir bar sorptive extraction (SBSE) with in situ derivatization and thermal desorption (TD)-gas chromatography-mass spectrometry (GC-MS), which is used for the determination of trace amounts of chlorophenols, such as 2,4-dichlorophenol (2,4-DCP), 2,4,6-trichlorophenol (2,4,6-TrCP), 2,3,4,6-tetrachlorophenol (2,3,4,6-TeCP) and pentachlorophenol (PCP), in tap water, river water and human urine samples, is described. The derivatization conditions with acetic acid anhydride and the SBSE conditions such as extraction time are investigated. Then, the stir bar is subjected to TD followed by GC-MS. The detection limits of the chlorophenols in tap water, river water and human urine samples are 1-2, 1-2, and 10-20 pg ml−1 (ppt), respectively. The calibration curves for the chlorophenols are linear and have correlation coefficients higher than 0.99. The average recoveries of the chlorophenols in all the samples are higher than 95% (R.S.D. < 10%) with correction using added surrogate standards, 2,4-dichlorophenol-d5, 2,4,6-trichlorophenol-13C6, 2,3,4,6-tetrachlorophenol-13C6 and pentachlorophenol-13C6. This simple, accurate, sensitive and selective analytical method may be applicable to the determination of trace amounts of chlorophenols in liquid samples.  相似文献   

16.
This work was concerned with developing an electrophoretic method for rapid determination of nitrites and nitrates in drinking water. The background electrolyte was Tris-HCl buffer with an addition of cetyltrimethylammonium chloride to reverse the electro-osmotic flow. Online preconcentration of samples using the field-amplified sample stacking method provided detection limits of 0.003 mg L?1 (i.e. 65 nM) for nitrites and 0.010 mg L?1 (i.e. 160 nM) for nitrates, which are sufficiently low for quality control of drinking water. The method was tested in a concentration range corresponding to real drinking water samples and the differentiation between nitrites and nitrates was sufficient for simultaneous determination of nitrites at their concentrations of the order of tenths of mg L?1 and nitrates at their concentrations of the order of units to tens of mg L?1. A number of authors have neglected this important aspect when concentrating only on achieving the lowest possible detection limits. Separation of the two analytes and iodate as an internal standard was achieved in only three minutes. Total analysis time including preconditioning was eight minutes.  相似文献   

17.
The detection of central nervous system (CNS) tissue (i.e. brain and spinal cord) by the use of GC-MS and certain fatty acids (FAs) as their methyl esters (FAMEs) was previously shown to be a very promising approach towards identification of CNS tissue as a specified risk material (SRM) in meat products, contrasting available immunochemical methods. This GC-MS method promised to allow quantification of CNS material as low as 0.01%. Here, we show that the CNS-relevant FAMEs C22:6, C24:19, C24:17, C24:0 and C24-OH are present in pure muscle and adipose tissue samples in detectable amounts. Thus, limits of detection are not feasible as quality parameters in this analytical GC-MS approach. Instead, cut-off values have to be applied as calculated from the baseline content of the respective FAME in CNS-free samples and its variation for a given statistical security. Furthermore, the FAs used for quantification of the CNS showed distinct differences depending on species and age. This finding is in accordance with previous studies where it had been concluded that species and age differentiation of CNS might be possible with GC-MS. However, it was not taken into account that it also necessitates a strict analytical strategy for quantification of the CNS content: identification of the presence of CNS (step 1); identification of species and age (step 2); and quantification by use of a species- and age-specific CNS calibration (step 3). Differences between the FA content of the CNS used for calibrating and the CNS in the sample will cause up to fivefold deviation from the true CNS content. Our results show that the FA best suited for identification (step 1) and quantification (step 3) purposes is cerebronic acid C24-OH after silylation. Further in-depth studies are needed in order to elucidate variability of brain FA content and to determine analytical limits. However, the present GC-MS approach is already a highly promising supplement to existing immunochemical methods for the detection of traces of CNS material in meat products.  相似文献   

18.
Tschmelak J  Proll G  Gauglitz G 《Talanta》2005,65(2):313-323
Certain contaminants at trace concentrations in surface waters can have dramatic effects on the hormonal system of organisms in the aquatic environment. Therefore, immunoanalytical methods at a very low limit of detection (LOD) and a low limit of quantification (LOQ) are becoming more and more important for environmental analysis and especially for monitoring drinking water quality. Environmental monitoring of antibiotics, hormones, endocrine disrupting chemicals, and pesticides in real water samples (e.g. surface, ground or drinking water) with difficult matrices places high demands on chemical analysis. Biosensors have suitable characteristics such as efficiency in allowing very fast, sensitive, and cost-effective detection. Here we describe an assay optimization process with a fully automated immunoassay for estrone which resulted in a LOD below 0.20 ng L−1 and a LOQ below 1.40 ng L−1. In contrast to common analytical methods such as GC-MS or HPLC-MS, the biosensor used requires no sample pre-treatment and pre-concentration. The very low validation parameters for estrone are the result of the continuous optimization of the immunoassay. The basis of our sensitive assay is the antibody with a high affinity constant towards estrone. During the optimization process, we reduced the amount of antibody per sample and improved the chip surface modification. Finally, this proceeding led to a calibration routine with an amount of antibody of only 3.0 ng per sample (sample volume: 1.0 mL). The reduction of the amount of antibody per sample results in better validation parameters (LOD, LOQ, and IC50), but this reduction leads to the current device-related limitation of the River Analyser (RIANA).For some endocrine disrupting compounds, no effect levels (NOELs) in the lower nanogram per liter range are reported. This defines the challenge, which analytical methods have to compete with and our RIANA instrument with its improved sensitivity for the detection of a single hormone in the lower nanogram per liter range is a powerful tool in aquatic analytics in addition to the common analytical methods.  相似文献   

19.
In order to help to elucidate the transport and fate of perfluorinated acids (PFAs) in the environment, a reliable and sensitive analytical method has been developed in present study for determination of short- and long-chain PFAs in various solid matrices. The method consisted of solvent extraction of PFAs from solid matrices using sonication, solid phase extraction (SPE) using weak anion exchange (WAX) cartridges, clean-up of SPE eluent with dispersive carbon sorbent and quantitation by high performance liquid chromatography-negative electrospray-tandem mass spectrometry (HPLC-negative ESI-MS/MS). The method detection limits (MDL) and quantitation limits (MQL), which were analyte- and sample-dependent, ranged from 0.02 to 0.06?ng?g?1 and 0.10 to 0.90?ng?g?1, respectively. The recoveries of all PFAs were generally good enough for quantitative analysis of these chemicals (57–115%), especially for short-chain (<C8, 80–115%) PFAs excluded in previous studies because methods were not available. The precisions of this method, represented by the percent relative standard deviation (RSD) of spiked measurements, were in a range of 1–19%. In addition, matrix effect did not affect analyte quantification in solid matrices in most cases, and the validated method was successfully applied to analyses of short- and long-chain PFAs in various solid matrices.  相似文献   

20.
Ketola RA  Virkki VT  Ojala M  Komppa V  Kotiaho T 《Talanta》1997,44(3):373-382
The aim of this work was to compare the characteristics of three methods, membrane inlet mass spectrometry (MIMS), purge-and-trap gas chromatography-mass spectrometry (P&T) and static headspace gas chromatography (HSGC), for the determination of volatile organic compounds in water samples as used in routine analysis. The characteristics examined included linear dynamic ranges, detection limits of selected environmentally hazardous volatile organic compounds (e.g. toluene, benzene and trichloroethene) in water, required analysis time and reproducibility of the analytical methods. The MIMS and P&T methods had the lowest detection limits for all the tested compounds, ranging from 0.1 to 5 mug 1(-1). Linear dynamic ranges using the MIMS method were about four orders of magnitude and using the P&T method about two orders of magnitude. Detection limits of the HSGC method were 10-100 times higher than those of the other two methods, but the linear dynamic ranges were larger, even up to six orders of magnitude. The analysis time per sample was shortest for the MIMS method, from 5 to 10 min, and ranged around from 35 to 45 min for the HSGC and P&T methods. The reproducibilities of the methods were of the same order of magnitude, in the range of 1-13%. Agreement between the analytical results obtained for spiked samples and for environmental water samples by the three different methods was very good.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号