首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper uses the Reduced Order Model (ROM) method to investigate the nonlinear-parametric dynamics of electrostatically actuated MEMS cantilever resonators under soft Alternating Current (AC) voltage of frequency near half natural frequency of the resonator. The voltage is between the resonator and a ground plate, and provides a nonlinear parametric actuation for the resonator. Fringe effect and damping forces are included. The resonator is modeled as an Euler–Bernoulli cantilever. Two methods of investigations are compared, Method of Multiple Scales (MMS), and Reduced Order Model. Moreover, the instabilities (bifurcation points) are predicted for both cases, when the voltage is swept up, and when the voltage is swept down. Although MMS and ROM are in good agreement for small amplitudes, MMS fails to accurately predict the behavior of the MEMS resonator for greater amplitudes. Only ROM captures the behavior of the system for large amplitudes. ROM convergence shows that five terms model accurately predicts the steady-states of the resonator for both small and large amplitudes.  相似文献   

2.
We investigate the nonlinear dynamics of a system of generalized Duffing-type MEMS resonator in the frame of simple analog electronic circuit. A mathematical model formed for the proposed generalized Duffing-type MEMS oscillator in which nonlinearities arising out of two different sources such as mid-plane stretching and electrostatic force can lead to variety of nonlinear phenomena such as period-doubling route, transient chaos and homo-/heteroclinic oscillations. These phenomena were confirmed through detailed numerical investigations such as phase portraits, bifurcation diagram, Poincaré map, Lyapunov exponent spectrum and finite-time Lyapunov exponent. The analog circuit realization for the Duffing-type MEMS resonator is constructed. The numerically simulated results are confirmed in the laboratory experimental observations which are closely matched with each other. The experimentally observed chaotic attractor confirmed through FFT spectrum, 0–1 test and Poincaré cross section. In addition, the robustness of the signal strength is confirmed through signal-to-noise ratio.  相似文献   

3.
We develop a new technique for preshaping input commands to control microelectromechanical systems (MEMS). In general, MEMS are excited using an electrostatic field which is a nonlinear function of the states and the input voltage. Due to the nonlinearity, the frequency of the device response to a step input depends on the input magnitude. Therefore, traditional shaping techniques which are based on linear theory fail to provide good performance over the whole input range. The technique we propose combines the equations describing the static response of the device, an energy balance argument, and an approximate nonlinear analytical solution of the device response to preshape the voltage commands. As an example, we consider set-point stabilization of an electrostatically actuated torsional micromirror. The shaped commands are applied to drive the micromirror to a desired tilt angle with zero residual vibrations. Simulations show that fast mirror switching operation with almost zero overshoot can be realized using this technique. The proposed methodology accounts for the energy of the significant higher modes and can be used to shape input commands applied to other nonlinear micro- and macro-systems.  相似文献   

4.
Compared to the integer-order chaotic MEMS resonator, the fractional-order system can better model its hereditary properties and exhibit complex dynamical behavior. Following the increasing attention to adaptive stabilization in controller design, this paper deals with the observer-based adaptive stabilization issue of the fractional-order chaotic MEMS resonator with uncertain function, parameter perturbation, and unmeasurable states under electrostatic excitation. To compensate the uncertainty, a Chebyshev neural network is applied to approximate the uncertain function while its weight is tuned by a parametric update law. A fractional-order state observer is then constructed to gain unmeasured feedback information and a tracking differentiator based on a super-twisting algorithm is employed to avoid repeated derivative in the framework of backstepping. Based on the Lyapunov stability criterion and the frequency-distributed model of the fractional integrator, it is proved that the adaptive stabilization scheme not only guarantees the boundedness of all signals, but also suppresses chaotic motion of the system. The effectiveness of the proposed scheme for the fractional-order chaotic MEMS resonator is illustrated through simulation studies.  相似文献   

5.
Habib  Giuseppe  Romeo  Francesco 《Nonlinear dynamics》2021,104(4):3187-3204
Nonlinear Dynamics - The work is devoted to the study of a MEMS resonator dynamics under the action of phase-locked and automatic gain control loops. Particular attention is directed to the study...  相似文献   

6.
The dynamics of a close-loop electrostatic MEMS resonator, proposed as a platform for ultra sensitive mass sensors, is investigated. The parameter space of the resonator actuation voltage is investigated to determine the optimal operating regions. Bifurcation diagrams of the resonator response are obtained at five different actuation voltage levels. The resonator exhibits bi-stability with two coexisting stable equilibrium points located inside a lower and an upper potential wells. Steady-state chaotic attractors develop inside each of the potential wells and around both wells. The optimal region in the parameter space for mass sensing purposes is determined. In that region, steady-state chaotic attractors develop and spend most of the time in the safe lower well while occasionally visiting the upper well. The robustness of the chaotic attractors in that region is demonstrated by studying their basins of attraction. Further, regions of large dynamic amplification are also identified in the parameter space. In these regions, the resonator can be used as an efficient long-stroke actuator.  相似文献   

7.
This paper presents a study of the effect of a time-delayed feedback controller on the dynamics of a Microelectromechanical systems (MEMS) capacitor actuated as a resonator by DC and AC voltage loads. A linearization analysis is conducted to determine the stability chart of the linearized system equations as a function of the time delay period and the controller gain. Then the method of multiple-scales is applied to determine the response and stability of the system for small vibration amplitude and voltage loads. It is shown that negative time-delay feedback control gain can lead to unstable responses, even if AC voltage is relatively small compared to the DC voltage. On the other hand, positive time delay can considerably strengthen the system stability even in fractal domains. We also show how the controller can be used to control damping in MEMS, increasing or decreasing, by tuning the gain amplitude and delay period. Agreements among the results of a shooting technique, long-time integration, basin of attraction analysis with the perturbation method are achieved.  相似文献   

8.
We present a theoretical study of the dynamics of the coupled system of Jiang, McFarland, Bergman, and Vakakis. It comprises a harmonically excited linear subsystem weakly coupled to an essentially nonlinear oscillator. We explored the rich dynamics exhibited by this coupled system by determining its periodic responses and their bifurcations. Not surprisingly, we found a lot of interesting dynamics over a broad frequency range: cyclic-fold, Hopf, symmetry-breaking, and period-doubling bifurcations; phase-locked motions; regions with multiple coexisting solutions; hysteresis; and chaos. We did not find any occurrence of energy transfer via modulation (also known as zero-to-one internal resonance); theoretically, the possibility of its occurrence was ruled out for systems with weak nonlinearity and damping. Finally, we investigated the ef fectiveness of the so-called nonlinear energy sink (NES) in vibration attenuation of forced linear structures. We found that the NES results in an increase in the vibration amplitude of the linear subsystem, especially when the damping is low, contrary to the claim made by Jiang et al. Also, we did not find any indication of nonlinear energy pumping or localization of energy in the NES, away from the directly forced linear subsystem, indicating that the NES is not ef fective for controlling the vibrations of forced linear structures.  相似文献   

9.
Nonlinear elastic effects play an important role in the dynamics of microelectromechanical systems (MEMS). A Duffing oscillator is widely used as an archetypical model of mechanical resonators with nonlinear elastic behavior. In contrast, nonlinear dissipation effects in micromechanical oscillators are often overlooked. In this work, we consider a doubly clamped micromechanical beam oscillator, which exhibits nonlinearity in both elastic and dissipative properties. The dynamics of the oscillator is measured in both frequency and time domains and compared to theoretical predictions based on a Duffing-like model with nonlinear dissipation. We especially focus on the behavior of the system near bifurcation points. The results show that nonlinear dissipation can have a significant impact on the dynamics of micromechanical systems. To account for the results, we have developed a continuous model of a geometrically nonlinear beam-string with a linear Voigt–Kelvin viscoelastic constitutive law, which shows a relation between linear and nonlinear damping. However, the experimental results suggest that this model alone cannot fully account for all the experimentally observed nonlinear dissipation, and that additional nonlinear dissipative processes exist in our devices.  相似文献   

10.
Nonlinear Dynamics - We conside the dynamics of a nonlinear resonator that is nonlinearly coupled to a linear resonator that has a relatively short decay time. In this case, the secondary (linear)...  相似文献   

11.
A detailed numerical investigation on stability and bifurcation analysis of a highly nonlinear electrically driven MEMS resonator has been established. A nonlinear model has been developed by using Hamilton’s principle and Galerkin’s method considering both transverse and longitudinal displacement of the resonator. The special care has been paid by incorporating higher order correction of electrostatic pressure. The pull-in results and consequences of higher order correction on the pull-in stability have been investigated. Furthermore, investigation of nonlinear phenomenon for the consequences of air-gap, electrostatic forcing parameter and effective damping on overall responses has been thoroughly studied. The possible of undesirable catastrophic failure at the unstable critical points has been critically examined. Basins of attractions that postulate a unique response in multi-region state for a specific initial condition have been depicted. The obtained responses using first-order method of multiple scales have been cross compared with the findings obtained numerically. Findings from this work can significantly be adopted to identify the locus of instability in microcantilever-based resonator when subjected to AC voltage polarization. In addition, the present outcomes provide theoretical and practical ideas for controlling the systems and optimizing their operation.  相似文献   

12.
Wagg  David J. 《Meccanica》2003,38(2):227-238
In this paper we consider using a model reference adaptive control approach to control nonlinear systems. We consider the controller design and stability analysis associated with these type of adaptive systems. Then we discuss the use of model reference adaptive control algorithms to control systems which exhibit nonlinear dynamical behaviour using the example of a Duffing oscillator being controlled to follow a linear reference model. For this system we show that if the nonlinearity is small then standard linear model reference control can be applied. A second example, which is often found in synchronization applications, is when the nonlinearities in the plant and reference model are identical. Again we show that linear model reference adaptive control is sufficient to control the system. Finally we consider controlling more general nonlinear systems using adaptive feedback linearization to control scalar nonlinear systems. As an example we use the Lorenz and Chua systems with parameter values such that they both have chaotic dynamics. The Lorenz system is used as a reference model and a single coordinate from the Chua system is controlled to follow one of the Lorenz system coordinates.  相似文献   

13.
The nonlinear interactions of a microarch resonator with 3:1 internal resonance are studied. The microarch is subjected to a combination of direct current (DC) and alternating current (AC) electric voltages. Thin piezoelectric layers are thoroughly bonded on the top and bottom surfaces of the microarch. The piezoelectric actuation is not only used to modulate the stiffness and resonance frequency of the resonator but also to provide the suitable linear frequency ratio for the activation of the internal resonance. The size effect is incorporated by using the so-called modified strain gradient theory. The system is highly nonlinear due to the co-existence of the initial curvature, the mid-plane stretching resulting from clamped anchors, and the electrostatic excitation. The eigenvalue problem is solved to conduct a frequency analysis and identify the possible regions for activating the internal resonance. The effects of the piezoelectric actuation, the electric excitation, and the small-scale effect are investigated on the internal resonance. Exclusive nonlinear phenomena such as Hopf bifurcation and hysteresis are identified in the microarch response. It is shown that by applying appropriate piezoelectric actuation, one is able to activate microarch internal resonance regardless of the initial rise level of the microarch. It is also disclosed that among all the parameters, AC electric voltage has the greatest effect on the energy exchange between the interacting modes. The results can be used to design resonators and internal resonance based micro-electro-mechanical system (MEMS) energy harvesters.  相似文献   

14.
Material failure by crack propagation essentially involves a concentration of large displacement-gradients near a crack's tip, even at scales where no irreversible deformation and energy dissipation occurs. This physical situation provides the motivation for a systematic gradient expansion of general nonlinear elastic constitutive laws that goes beyond the first order displacement-gradient expansion that is the basis for linear elastic fracture mechanics (LEFM). A weakly nonlinear fracture mechanics theory was recently developed by considering displacement-gradients up to second order. The theory predicts that, at scales within a dynamic lengthscale ℓ from a crack's tip, significant logr displacements and 1/r displacement-gradient contributions arise. Whereas in LEFM the 1/r singularity generates an unbalanced force and must be discarded, we show that this singularity not only exists but is also necessary in the weakly nonlinear theory. The theory generates no spurious forces and is consistent with the notion of the autonomy of the near-tip nonlinear region. The J-integral in the weakly nonlinear theory is also shown to be path-independent, taking the same value as the linear elastic J-integral. Thus, the weakly nonlinear theory retains the key tenets of fracture mechanics, while providing excellent quantitative agreement with measurements near the tip of single propagating cracks. As ℓ is consistent with lengthscales that appear in crack tip instabilities, we suggest that this theory may serve as a promising starting point for resolving open questions in fracture dynamics.  相似文献   

15.
The paper presents a passive elasto-magnetic suspension based on rare-earth permanent magnets: the dynamical system is described with theoretical and numerical nonlinear models, whose results are validated through experimental comparison. The goal is to minimize the dependence on mass of the natural frequency of a single degree of freedom system. For a system with variable mass, static configuration and dynamical behaviour are compared for classic linear elastic systems, for purely magnetic suspensions and for a combination of the two. In particular the dynamics of the magneto-mechanic interaction is predicted by use of nonlinear and linearised models and experimentally observed through a suitable single degree of freedom test rig.  相似文献   

16.
This paper addresses the derivation of finite element modelling for nonlinear dynamics of Cosserat rods with general deformation of flexure, extension, torsion, and shear. A deformed configuration of the Cosserat rod is described by the displacement vector of the deformed centroid curve and an orthogonal moving frame, rigidly attached to the cross-section of the rod. The position of the moving frame relative to the inertial frame is specified by the rotation matrix, parameterised by a rotational vector. The shape functions with up to third order nonlinear terms of generic nodal displacements are obtained by solving the nonlinear partial differential equations of motion in a quasi-static sense. Based on the Lagrangian constructed by the Cosserat kinetic energy and strain energy expressions, the principle of virtual work is employed to derive the ordinary differential equations of motion with third order nonlinear generic nodal displacements. A cantilever is presented as a simple example to illustrate the use of the formulation developed here to obtain the lower order nonlinear ordinary differential equations of motion of a given structure. The corresponding nonlinear dynamical responses of the structures are presented through numerical simulations using the MATLAB software. In addition, a MicroElectroMechanical System (MEMS) device is presented. The developed equations of motion have furthermore been implemented in a VHDL-AMS beam model. Together with available models of the other components, a netlist of the device is formed and simulated within an electrical circuit simulator. Simulation results are verified against Finite Element Analysis (FEA) results for this device.  相似文献   

17.
A constitutive theory is developed for shape memory polymers. It is to describe the thermomechanical properties of such materials under large deformations. The theory is based on the idea, which is developed in the work of Liu et al. [2006. Thermomechanics of shape memory polymers: uniaxial experiments and constitutive modelling. Int. J. Plasticity 22, 279-313], that the coexisting active and frozen phases of the polymer and the transitions between them provide the underlying mechanisms for strain storage and recovery during a shape memory cycle. General constitutive functions for nonlinear thermoelastic materials are used for the active and frozen phases. Also used is an internal state variable which describes the volume fraction of the frozen phase. The material behavior of history dependence in the frozen phase is captured by using the concept of frozen reference configuration. The relation between the overall deformation and the stress is derived by integration of the constitutive equations of the coexisting phases. As a special case of the nonlinear constitutive model, a neo-Hookean type constitutive function for each phase is considered. The material behaviors in a shape memory cycle under uniaxial loading are examined. A linear constitutive model is derived from the nonlinear theory by considering small deformations. The predictions of this model are compared with experimental measurements.  相似文献   

18.
A constitutive theory is developed for shape memory polymers. It is to describe the thermomechanical properties of such materials under large deformations. The theory is based on the idea, which is developed in the work of Liu et al. [2006. Thermomechanics of shape memory polymers: uniaxial experiments and constitutive modeling. Int. J. Plasticity 22, 279-313], that the coexisting active and frozen phases of the polymer and the transitions between them provide the underlying mechanisms for strain storage and recovery during a shape memory cycle. General constitutive functions for nonlinear thermoelastic materials are used for the active and frozen phases. Also used is an internal state variable which describes the volume fraction of the frozen phase. The material behavior of history dependence in the frozen phase is captured by using the concept of frozen reference configuration. The relation between the overall deformation and the stress is derived by integration of the constitutive equations of the coexisting phases. As a special case of the nonlinear constitutive model, a neo-Hookean type constitutive function for each phase is considered. The material behaviors in a shape memory cycle under uniaxial loading are examined. A linear constitutive model is derived from the nonlinear theory by considering small deformations. The predictions of this model are compared with experimental measurements.  相似文献   

19.
Smart material systems and structures have remarkable properties responsible for their application in different fields of human knowledge. Shape memory alloys, piezoelectric ceramics, magnetorheological fluids, and magnetostritive materials constitute the most important materials that belong to the smart materials category. Shape memory alloys (SMAs) are metallic alloys usually employed when large forces and displacements are required. Applications in aerospace structures, rotordynamics and several bioengineering devices are investigated nowadays. In terms of applied dynamics, SMAs are being used in order to exploit adaptive dissipation associated with hysteresis loop and the mechanical property changes due to phase transformations. This paper presents a general overview of nonlinear dynamics and chaos of smart material systems built with SMAs. Oscillators, vibration absorbers, impact systems and structural systems are of concern. Results show several possibilities where SMAs can be employed for dynamical applications.  相似文献   

20.
Nonlinear dynamics of a clamped–clamped capacitive micro-beam resonator subjected to subharmonic excitation of order one-half is studied. The micro-beam resonator is sandwiched with two piezoelectric layers throughout the length, and as a result of piezoelectric actuation a tensile/compressive axial load is induced along the length which is used as a frequency tuning tool. The resonator is subjected to a combination of a bias DC and harmonic AC electrostatic actuations. In order to determine the frequency response subharmonic resonance condition, both perturbation and shooting methods are applied. The stability of the periodic solutions and the bifurcations types are also studied. It is shown that the application of perturbation method imposes some limitations on the order of magnitudes of the terms in the differential equation of the motion; as a result out of the domain where the ordering assumption of the perturbation solution does not hold, some periodic solutions as well as some vital bifurcation points are missed. It is shown that on the frequency domain, the resonator exhibits both softening and hardening behaviors whereas this is not predicted by the perturbation scheme. The effect of DC and AC actuation voltages on the qualitative response of the system is determined. It is shown that based on the polarity of the piezoelectric actuation, the frequency response curves can be shifted both in forward and backward directions which can be used in the design of novel RF MEMS filters/sensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号