首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transition-metal catalyzed coupling to form C−N bonds is significant in chemical science. However, the inert nature of N2 and CO2 renders their coupling quite challenging. Herein, we report the activation of dinitrogen in the mild plasma atmosphere by the gas-phase monometallic YB1–4 anions and further coupling of CO2 to form C−N bonds by using mass spectrometry and theoretical calculation. The observed product anions are NCNBO and N(BO)2, accompanied by the formation of neutral products YO and YB0–2NC, respectively. We can tune the reactivity and the type of products by manipulating the number of B atoms. The B atoms in YB1–4N2 act as electron donors in CO2 reduction reactions, and the carbon atom originating from CO2 serves as an electron reservoir. This is the first example of gas-phase monometallic anions, which are capable to realize the functionalization of N2 with CO2 through C−N bond formation and N−N and C−O bond cleavage.  相似文献   

2.
Reducing CO2 selectively to one of the several C1 products is challenging, as the thermodynamic reduction potentials for the different n e/n H+ reductions of CO2 are similar and so is the reduction potential for H+ reduction. Recently, Halime, Aukauloo, and co-workers have taken inspiration from the active site of nickel CO dehydrogenase (Ni-CODH) to design bimetallic iron porphyrins bridged by a urea moiety. These complexes show fast and selective reduction of CO2 to CO and the results suggest a Ni-CODH type mechanism at play where one of the two metals binds and reduces the CO2 while the other stabilizes the reduced species by forming a bridged complex, facilitating the C−O bond cleavage.  相似文献   

3.
Molecular electrocatalysts for CO2-to-CO conversion often operate at large overpotentials, due to the large barrier for C−O bond cleavage. Illustrated with ruthenium polypyridyl catalysts, we herein propose a mechanistic route that involves one metal center that acts as both Lewis base and Lewis acid at different stages of the catalytic cycle, by density functional theory in corroboration with experimental FTIR. The nucleophilic character of the Ru center manifests itself in the initial attack on CO2 to form [ Ru -CO2]0, while its electrophilic character allows for the formation of a 5-membered metallacyclic intermediate, [ Ru -CO2CO2]0,c, by addition of a second CO2 molecule and intramolecular cyclization. The calculated activation barrier for C−O bond cleavage via the metallacycle is decreased by 34.9 kcal mol−1 as compared to the non-cyclic adduct in the two electron reduced state of complex 1 . Such metallacyclic intermediates in electrocatalytic CO2 reduction offer a new design feature that can be implemented consciously in future catalyst designs.  相似文献   

4.
The copper-dependent formylglycine-generating enzyme (FGE) catalyzes the oxygen-dependent oxidation of specific peptidyl-cysteine residues to formylglycine. Our QM/MM calculations provide a very likely mechanism for this transformation. The reaction starts with dioxygen binding to the tris-thiolate CuI center to form a triplet CuII-superoxide complex. The rate-determining hydrogen atom abstraction involves a triplet-singlet crossing to form a CuII−OOH species that couples with the substrate radical, leading to a CuI-alkylperoxo intermediate. This is accompanied by proton transfer from the hydroperoxide to the S atom of the substrate via a nearby water molecule. The subsequent O−O bond cleavage is coupled with the C−S bond breaking that generates the formylglycine and a CuII-oxyl complex. Moreover, our results suggest that the aldehyde oxygen of the final product originates from O2, which will be useful for future experimental work.  相似文献   

5.
The activation of the α-C−H bond of ketones typically requires an amine and a directing group to guide the reaction selectivity in amine-catalysis carbonyl chemistry. For an α-C−H bond activation of ketone, directing groups are also required to control the reaction selectivity. Reported herein is the first α-alkylation of cyclic ketones in the absence of an amine catalyst and directing group. 1H NMR, XPS, EPR studies and DFT calculations indicate that an α-carbon radical intermediate is formed through direct and selective activation of the inert α-C−H bond of ketones chelating on the surface of colloidal quantum dots (QDs). Such an interaction is essential for weakening the C−H bond, as exemplified, using CdSe QDs as the sole photocatalyst to execute α-C−H alkylation of cyclic ketones under visible-light irradiation. Without an amine catalyst and directing group, the high step- and atom-economy transformation under redox-neutral condition opens a new way for α-C−H functionalization of ketones in carbonyl chemistry.  相似文献   

6.
We report a porous three-dimensional anionic tetrazolium based CuI−MOF 1 , which is capable of cleaving the N−H bond of ammonia and primary amine, as well as the O−H bond of H2O along with spontaneous H2 evolution. In the gas-solid phase reaction of 1 with ammonia and water vapor, CuI−MOF 1 was gradually oxidized to NH2−CuII−MOF and OH−CuII−MOF, through single-crystal-to-single-crystal (SCSC) structural transformations, which was confirmed by XPS, PXRD and X-ray single-crystal diffraction. Density functional theory (DFT) demonstrated that CuI−MOF could lower N−H bond dissociation free energy of ammonia through coordination-induced bond weakening and promote H2 evolution by the reduction potential of 1 . To our knowledge, this is the first example of MOFs that activate ammonia and amine in gas-solid manner.  相似文献   

7.
Herein, we first design a model of reversible redox-switching metal–organic framework single-unit-cell sheets, where the abundant metal single sites benefit for highly selective CO2 reduction, while the reversible redox-switching metal sites can effectively activate CO2 molecules. Taking the synthetic Cu-MOF single-unit-cell sheets as an example, synchrotron-radiation quasi in situ X-ray photoelectron spectra unravel the reversible switching CuII/CuI single sites initially accept photoexcited electrons and then donate them to CO2 molecules, which favors the rate-liming activation into CO2δ−, verified by in situ FTIR spectra and Gibbs free energy calculations. As an outcome, Cu-MOF single-unit-cell sheets achieve near 100 % selectivity for CO2 photoreduction to CO with a high rate of 860 μmol g−1 h−1 without any sacrifice reagent or photosensitizer, where both the activity and selectivity outperform previously reported photocatalysts evaluated under similar conditions.  相似文献   

8.
Heterostructured oxides with versatile active sites, as a class of efficient catalysts for CO2 electrochemical reduction (CO2ER), are prone to undergo structure reconstruction under working conditions, thus bringing challenges to understanding the reaction mechanism and rationally designing catalysts. Herein, we for the first time elucidate the structural reconstruction of CuO/SnO2 under electrochemical potentials and reveal the intrinsic relationship between CO2ER product selectivity and the in situ evolved heterostructures. At −0.85 VRHE, the CuO/SnO2 evolves to Cu2O/SnO2 with high selectivity to HCOOH (Faradaic efficiency of 54.81 %). Mostly interestingly, it is reconstructed to Cu/SnO2-x at −1.05 VRHE with significantly improved Faradaic efficiency to ethanol of 39.8 %. In situ Raman spectra and density functional theory (DFT) calculations reveal that the synergetic absorption of *COOH and *CHOCO intermediates at the interface of Cu/SnO2-x favors the formation of *CO and decreases the energy barrier of C−C coupling, leading to high selectivity to ethanol.  相似文献   

9.
The synthesis and characterization of (tBuPBP)Ni(OAc) ( 5 ) by insertion of carbon dioxide into the Ni−C bond of (tBuPBP)NiMe ( 1 ) is presented. An unexpected CO2 cleavage process involving the formation of new B−O and Ni−CO bonds leads to the generation of a butterfly-structured tetra-nickel cluster (tBuPBOP)2Ni4(μ-CO)2 ( 6 ). Mechanistic investigation of this reaction indicates a reductive scission of CO2 by O-atom transfer to the boron atom via a cooperative nickel-boron mechanism. The CO2 activation reaction produces a three-coordinate (tBuP2BO)Ni-acyl intermediate ( A ) that leads to a (tBuP2BO)−NiI complex ( B ) via a likely radical pathway. The NiI species is trapped by treatment with the radical trap (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) to give (tBuP2BO)NiII2-TEMPO) ( 7 ). Additionally, 13C and 1H NMR spectroscopy analysis using 13C-enriched CO2 provides information about the species involved in the CO2 activation process.  相似文献   

10.
The efficient ethanol electrosynthesis from CO2 is challenging with low selectivity at high CO2 electrolysis rates, due to the competition with H2 and other reduction products. Copper-based bimetallic electrocatalysts are potential candidates for the CO2-to-ethanol conversion, but the secondary metal has mainly been focused on active components (such as Ag, Sn) for CO2 electroreduction, which also promote selectivity of ethylene or other reduction products rather than ethanol. Limited attention has been given to alkali-earth metals due to their inherently active chemical property. Herein, we rationally synthesized a (111) facet-oriented nano Cu2Mg (designated as Cu2Mg(111)) intermetallic compound with high-density ordered Cu3-Mg sites. The in situ Raman spectroscopy and density function theory calculations revealed that the Cu3 -Mg + active sites allowed to increase *CO surface coverage, decrease reaction energy for *CO−CO coupling, and stabilize *CHCHOH intermediates, thus promoting the ethanol formation pathway. The Cu2Mg(111) catalyst exhibited a high FEC2H5OH of 76.2±4.8 % at 600 mA⋅cm−2, and a peak value of |jC2H5OH| of 720±34 mA⋅cm−2, almost 4 times of that using conventional Cu2Mg with (311) facets, comparable to the best reported values for the CO2-to-ethanol electroreduction.  相似文献   

11.
Photoconversion of CO2 and H2O into ethanol is an ideal strategy to achieve carbon neutrality. However, the production of ethanol with high activity and selectivity is challenging owing to the less efficient reduction half-reaction involving multi-step proton-coupled electron transfer (PCET), a slow C−C coupling process, and sluggish water oxidation half-reaction. Herein, a two-dimensional/two-dimensional (2D/2D) S-scheme heterojunction consisting of black phosphorus and Bi2WO6 (BP/BWO) was constructed for photocatalytic CO2 reduction coupling with benzylamine (BA) oxidation. The as-prepared BP/BWO catalyst exhibits a superior photocatalytic performance toward CO2 reduction, with a yield of 61.3 μmol g−1 h−1 for ethanol (selectivity of 91 %).In situ spectroscopic studies and theoretical calculations reveal that S-scheme heterojunction can effectively promote photogenerated carrier separation via the Bi−O−P bridge to accelerate the PCET process. Meanwhile, electron-rich BP acts as the active site and plays a vital role in the process of C−C coupling. In addition, the substitution of BA oxidation for H2O oxidation can further enhance the photocatalytic performance of CO2 reduction to C2H5OH. This work opens a new horizon for exploring novel heterogeneous photocatalysts in CO2 photoconversion to C2H5OH based on cooperative photoredox systems.  相似文献   

12.
Quantum chemistry calculations predict that besides the reported single metal anion Pt, Ni can also mediate the co-conversion of CO2 and CH4 to form [CH3−M(CO2)−H] complex, followed by transformation to C−C coupling product [H3CCOO−M−H] ( A ), hydrogenation products [H3C−M−OCOH] ( B ) and [H3C−M−COOH]. For Pd, a fourth product channel leading to PdCO2…CH4 becomes more competitive. For Ni, the feed order must be CO2 first, as the weaker donor-acceptor interaction between Ni and CH4 increases the C−H activation barrier, which is reduced by [Ni−CO2]. For Ni/Pt, the highly exothermic products A and B are similarly stable with submerged barrier that favors B . The smaller barrier difference between A and B for Ni suggests the C−C coupling product is more competitive in the presence of Ni than Pt. The charge redistribution from M is the driving force for product B channel. This study adds our understanding of single atomic anions to activate CH4 and CO2 simultaneously.  相似文献   

13.
A tetrahedral CuII alkylperoxido complex [CuII(TMG3tach)(OOCm)]+ ( 1OOCm ) (TMG3tach={2,2′,2′′-[(1s,3s,5s)-cyclohexane-1,3,5-triyl]tris-(1,1,3,3-tetramethyl guanidine)}, OOCm=cumyl peroxide) is prepared and characterized by UV/Vis, cold-spray ionization mass spectroscopy (CSI-MS), resonance Raman, and EPR spectroscopic methods. Product analysis of the self-decomposition reaction of 1OOCm in acetonitrile (MeCN) indicates that the reaction involves O−O bond homolytic cleavage of the peroxide moiety with concomitant C−H bond activation of the solvent molecule. When an external substrate such as 1,4-cyclohexadiene (CHD) is added, the O−O bond homolysis leads to C−H activation of the substrate. Furthermore, the reaction of 1OOCm with 2,6-di-tert-butylphenol derivatives produces the corresponding phenoxyl radical species (ArO.) together with a CuI complex through a concerted proton-electron transfer (CPET) mechanism. Details of the reaction mechanisms are explored by DFT calculations.  相似文献   

14.
Selective activation of the C(sp3)−H bond is an important process in organic synthesis, where efficiently activating a specific C(sp3)−H bond without causing side reactions remains one of chemistry's great challenges. Here we report that illuminated plasmonic silver metal nanoparticles (NPs) can abstract hydrogen from the C(sp3)−H bond of the Cα atom of an alkyl aryl ether β-O-4 linkage. The intense electromagnetic near-field generated at the illuminated plasmonic NPs promotes chemisorption of the β-O-4 compound and the transfer of photo-generated hot electrons from the NPs to the adsorbed molecules leads to hydrogen abstraction and direct cleavage of the unreactive ether Cβ−O bond under moderate reaction conditions (≈90 °C). The plasmon-driven process has certain exceptional features: enabling hydrogen abstraction from a specific C(sp3)−H bond, along with precise scission of the targeted C−O bond to form aromatic compounds containing unsaturated, substituted groups in excellent yields.  相似文献   

15.
Balancing the activation of H2O is crucial for highly selective CO2 electroreduction (CO2RR), as the protonation steps of CO2RR require fast H2O dissociation kinetics, while suppressing hydrogen evolution (HER) demands slow H2O reduction. We herein proposed one molecular engineering strategy to regulate the H2O activation using aprotic organic small molecules with high Gutmann donor number as a solvation shell regulator. These organic molecules occupy the first solvation shell of K+ and accumulate in the electrical double layer, decreasing the H2O density at the interface and the relative content of proton suppliers (free and coordinated H2O), suppressing the HER. The adsorbed H2O was stabilized via the second sphere effect and its dissociation was promoted by weakening the O−H bond, which accelerates the subsequent *CO2 protonation kinetics and reduces the energy barrier. In the model electrolyte containing 5 M dimethyl sulfoxide (DMSO) as an additive (KCl-DMSO-5), the highest CO selectivity over Ag foil increased to 99.2 %, with FECO higher than 90.0 % within −0.75 to −1.15 V (vs. RHE). This molecular engineering strategy for cation solvation shell can be extended to other metal electrodes, such as Zn and Sn, and organic molecules like N,N-dimethylformamide.  相似文献   

16.
Enhancing the peroxymonosulfate (PMS) activation efficiency to generate more radicals is vital to promote the Fenton-like reaction activity, however, how to promote the PMS adsorption and accelerate the interfacial electron transfer to boost its activation kinetics remains a great challenge. Herein, we prepared Cu-doped defect-rich In2O3 (Cu-In2O3/Ov) catalysts containing asymmetric Cu−Ov−In sites for PMS activation in water purification. The intrinsic catalytic activity is that the side-on adsorption configuration of the O−O bond (Cu−O−O−In) at the Cu-Ov-In sites significantly stretches the O−O bond length. Meanwhile, the Cu-Ov-In sites increase the electron density near the Fermi energy level, promoting more and faster electron transfer to the O−O bond for generating more SO4 and ⋅OH. The degradation rate constant of tetracycline achieved by Cu-In2O3/Ov is 31.8 times faster than In2O3/Ov, and it shows the possibility of membrane reactor for practical wastewater treatment.  相似文献   

17.
18.
The elementary steps of the anodic oxidation of ethanol on Pt in sulfuric acid are visualized with differential electrochemical mass spectroscopy (DEMS) by means of deuterium and 18O labelling. It turns out that: (i) ethanol is oxidized directly to acetaldehyde by the cleavage of one hydrogen of the α-C-atom and the hydroxyl hydrogen; (ii) a strongly bound intermediate is formed in parallel; (iii) the intermediate is oxidized at 0.7 V to give two CO2 molecules, one originating from the alcoholic group and still containing the alcoholic O, the other from the methyl group; (iv) CC bond splitting seems to occur during the oxidation of the adsorbate only.  相似文献   

19.
An experimental study on protonation of simple weakly basic molecules (L) by the strongest solid superacid, H(CHB11F11), showed that basicity of SO2 is high enough (during attachment to the acidic H atoms at partial pressure of 1 atm) to break the bridged H‐bonds of the polymeric acid and to form a mixture of solid mono‐ LH+⋅⋅⋅An, and disolvates, L−H+−L. With a decrease in the basicity of L=CO (via C), N2O, and CO (via O), only proton monosolvates are formed, which approach L−H+−An species with convergence of the strengths of bridged H‐bonds. The molecules with the weakest basicity, such as CO2 and weaker, when attached to the proton, cannot break the bridged H‐bond of the polymeric superacid, and the interaction stops at stage of physical adsorption. It is shown here that under the conditions of acid monomerization, it is possible to protonate such weak bases as CO2, N2, and Xe.  相似文献   

20.
Insertion of CO2 into the transition metal-hydride bond of [RhIIIH2(PH3)3]+, CuIH(PH3)2, and RhIH(PH3)3 was theoretically investigated with ab initio MO/MP 4, SD-CI , and CCD methods. The geometries of reactants, transition states (TS ), and products were optimized at the Hartree-Fock level, and then MP 4, SD-CI , and CCD calculations were performed on those optimized structures. The TS of the CO2 insertion into the CuI(bond)H bond is the most reactantlike, while the TS of the CO2 insertion into the RhIII(bond)H bond is the most productlike. The activation energy (Ea) and the reaction energy (ΔE) were calculated to be 6.5 and −33.5 kcal/mol for the CO2 insertion into the Cu1(bond)H bond, 21.2 and −7.0 kcal/mol for the CO2 insertion into the Rh1(bond)H bond, and 51.3 and −1.1 kcal/mol for the Rh111(bond)H bond at the SD-CI level, where negative ΔE represents exothermicity. These results are discussed in terms of the M(bond)H bond energy and the trans-influence of the hydride ligand. © 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号