共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper studies the local dynamics of an SDOF system with quadratic and cubic stiffness terms, and with linear delayed velocity feedback. The analysis indicates that for a sufficiently large velocity feedback gain, the equilibrium of the system may undergo a number of stability switches with an increase of time delay, and then becomes unstable forever. At each critical value of time delay for which the system changes its stability, a generic Hopf bifurcation occurs and a periodic motion emerges in a one-sided neighbourhood of the critical time delay. The method of Fredholm alternative is applied to determine the bifurcating periodic motions and their stability. It stresses on the effect of the system parameters on the stable regions and the amplitudes of the bifurcating periodic solutions. The project supported by the National Natural Science Foundation of China (19972025) 相似文献
2.
In this paper, a modified averaging scheme is presented for a class of time-delayed vibration systems with slow variables. The new scheme is a combination of the averaging techniques proposed by Hale and by Lehman and Weibel, respectively. The averaged equation obtained from the modified scheme is simple enough but it retains the required information for the local nonlinear dynamics around an equilibrium. As an application of the present method, the delay value for which a secondary Hopf bifurcation occurs is successfully located for a delayed van der Pol oscillator. 相似文献
3.
This paper presents a detailed analysis on the dynamics of a delayed oscillator with negative damping and delayed feedback
control. Firstly, a linear stability analysis for the trivial equilibrium is given. Then, the direction of Hopf bifurcation
and stability of periodic solutions bifurcating from trivial equilibrium are determined by using the normal form theory and
center manifold theorem. It shows that with properly chosen delay and gain in the delayed feedback path, this controlled delayed
system may have stable equilibrium, or periodic solutions, or quasi-periodic solutions, or coexisting stable solutions. In
addition, the controlled system may exhibit period-doubling bifurcation which eventually leads to chaos. Finally, some new
interesting phenomena, such as the coexistence of periodic orbits and chaotic attractors, have been observed. The results
indicate that delayed feedback control can make systems with state delay produce more complicated dynamics. 相似文献
4.
In this paper the non-linear dynamics of a state-dependent delay model of the turning process is analyzed. The size of the regenerative delay is determined not only by the rotation of the workpiece, but also by the vibrations of the tool. A numerical continuation technique is developed that can be used to follow the periodic orbits of a system with implicitly defined state-dependent delays. The numerical analysis of the model reveals that the criticality of the Hopf bifurcation depends on the feed rate. This is in contrast to simpler constant delay models where the criticality does not change. For small feed rates, subcritical Hopf bifurcations are found, similar to the constant delay models. In this case, periodic orbits coexist with the stable stationary cutting state and so there is the potential for large amplitude chatter and bistability. For large feed rates, the Hopf bifurcation becomes supercritical for a range of spindle speeds. In this case, stable periodic orbits instead coexist with the unstable stationary cutting state, removing the possibility of large amplitude chatter. Thus, the state-dependent delay in the model has a kind of stabilizing effect, since the supercritical case is more favorable from a practical viewpoint than the subcritical one. 相似文献
5.
Digital filters, frequently used in active control of mechanical systems, enable one to improve the signal-to-noise ratio and the control performance, but introduce group delays into the control loops simultaneously. In order to gain an insight into the effects of a digital filter on a controlled mechanical system, this paper presents the stability switches and the corresponding Hopf bifurcations of a double pendulum system with the linear quadratic control having a digital filter via theoretical analysis, numerical simulations and experiments. In this study, the digital filters are used to remove the undesired noise of high frequency, which is embedded in the control signal, and are modeled as the components of pure time delay during the theoretical analysis and numerical simulations. The study shows that a digital filter with moderate specifications can not only improve the vibration reduction effectively, but also save the energy consumption of the servo-motor remarkably. However, over demanding specifications will make the group delay of the filter exceed a critical value and cause either a divergent motion or a self-excited vibration through a Hopf bifurcation, the occurrence of which depends on both the stability and the size of the basin of attraction of the bifurcating periodic motion. The experimental results well coincide with the theoretical and numerical ones, and strongly support the simplification of the digital filters as the components of pure time delay. Finally, some suggestions are made to avoid the group delay induced instability. 相似文献
6.
The effect of time delays occurring in a proportional-integral-derivative feedback controller on the linear stability of a simple electromechanical system is investigated by analyzing the characteristic transcendental equation. It is found that the trivial fixed point of the system can lose its stability through Hopf bifurcations when the time delay crosses certain critical values. Codimension two bifurcations, which result from non-resonant and resonant Hopf–Hopf bifurcation interactions, are also found to exist in the system. 相似文献
7.
The jump and bifurcation of Duffing oscillator with hardening spring subject to narrow-band random excitation are systematically
and comprehensively examined. It is shown that, in a certain domain of the space of the oscillator and excitation parameters,
there are two types of more probable motions in the stationary response of the Duffing oscillator and jumps may occur. The
jump is a transition of the response from one more probable motion to another or vise versa. Outside the domain the stationary
response is either nearly Gaussian or like a diffused limit cycle. As the parameters change across the boundary of the domain
the qualitative behavior of the stationary response changes and it is a special kind of bifurcation. It is also shown that,
for a set of specified parameters, the statistics are unique and they are independent of initial condition. It is pointed
out that some previous results and interpretations on this problem are incorrect.
The project supported by National Natural Science Foundation of China 相似文献
8.
We investigate the effect of a fast vertical parametric excitation on self-excited vibrations in a delayed van der Pol oscillator. We use the method of direct partition of motion to derive the main autonomous equation governing the slow dynamic in the vicinity of the trivial equilibrium. Then, we apply the multiple scales method on this slow dynamic to derive a second-order slow flow system describing the modulation of slow dynamic. In particular we analyze the slow flow to obtain the effect of a fast excitation on the regions in parameter space where self-excited vibrations can be eliminated. We have shown that in the case where the time delay and the feedback gains are imposed, fast vertical parametric excitation can be an alternative to suppress undesirable self-excited vibrations in a delayed van der Pol oscillator. 相似文献
9.
The dynamical behaviour of a parametrically excited Duffing-van der Pol oscillator under linear-plus-nonlinear state feedback control with a time delay is concerned. By means of the method of averaging together with truncation of Taylor expansions, two slow-flow equations on the amplitude and phase of response were derived for the case of principal parametric resonance. It is shown that the stability condition for the trivial solution is only associated with the linear terms in the original systems besides the amplitude and frequency of parametric excitation. And the trivial solution can be stabilized by appreciate choice of gains and time delay in feedback control. Different from the case of the trivial solution, the stability condition for nontrivial solutions is also associated with nonlinear terms besides linear terms in the original system. It is demonstrated that nontrivial steady state responses may lose their stability by saddle-node (SN) or Hopf bifurcation (HB) as parameters vary. The simulations, obtained by numerically integrating the original system, are in good agreement with the analytical results. 相似文献
10.
Since the ratio-dependent theory reflects the fact that predators must share and compete for food, it is suitable for describing the relationship between predators and their preys and has recently become a very important theory put forward by biologists. In order to investigate the dynamical relationship between predators and their preys, a so-called Michaelis-Menten ratio-dependent predator-prey model is studied in this paper with gestation time delays of predators and preys taken into consideration. The stability of the positive equilibrium is investigated by the Nyquist criteria, and the existence of the local Hopf bifurcation is analyzed by employing the theory of Hopf bifurcation. By means of the center manifold and the normal form theories, explicit formulae are derived to determine the stability, direction and other properties of bifurcating periodic solutions. The above theoretical results are validated by numerical simulations with the help of dynamical software WinPP. The results show that if both the gestation delays are small enough, their sizes will keep stable in the long run, but if the gestation delays of predators are big enough, their sizes will periodically fluc-tuate in the long term. In order to reveal the effects of time delays on the ratio-dependent predator-prey model, a ratiodependent predator-prey model without time delays is considered. By Hurwitz criteria, the local stability of positive equilibrium of this model is investigated. The conditions under which the positive equilibrium is locally asymptotically stable are obtained. By comparing the results with those of the model with time delays, it shows that the dynamical behaviors of ratio-dependent predator-prey model with time delays are more complicated. Under the same conditions, namely, with the same parameters, the stability of positive equilibrium of ratio-dependent predator-prey model would change due to the introduction of gestation time delays for predators and preys. Moreover, with the variation of time delays, the positive equilibrium of the ratio-dependent predator-prey model subjects to Hopf bifurcation. 相似文献
11.
对超混沌系统进行分岔反控制的研究已成为当前一个重要研究方向,常采用线性控制器实现反控制。首先,对一个四维超混沌系统的Hopf分岔特性进行了分析,利用高维分岔理论推导出分岔特性与参数之间的关系式,以此判断系统的分岔类型。然后,设计一个由线性与非线性组合成的混合控制器对系统进行分岔反控制,控制参数取值不同时,系统会呈现出不同的分岔特性。通过分析得出,调控线性控制器参数可以使系统Hopf分岔提前或延迟发生;同时,调控混合控制器的两个控制参数,可以改变系统Hopf分岔特性,实现分岔反控制。 相似文献
12.
We investigate the primary resonance of an externally excited van der Pol oscillator under state feedback control with a time delay. By means of the asymptotic perturbation method, two slow-flow equations on the amplitude and phase of the oscillator are obtained and external excitation-response and frequency-response curves are shown. We discuss how vibration control and high amplitude response suppression can be performed with appropriate time delay and feedback gains. Moreover, energy considerations are used in order to investigate existence and characteristics of limit cycles of the slow-flow equations. A limit cycle corresponds to a two-period modulated motion for the van der Pol oscillator. We demonstrate that appropriate choices for the feedback gains and the time delay can exclude the possibility of modulated motion and reduce the amplitude peak of the primary resonance. Analytical results are verified with numerical simulations. 相似文献
13.
This paper investigates the dynamics of a TCP system described by a first- order nonlinear delay differential equation. By analyzing the associated characteristic transcendental equation, it is shown that a Hopf bifurcation sequence occurs at the pos- itive equilibrium as the delay passes through a sequence of critical values. The explicit algorithms for determining the Hopf bifurcation direction and the stability of the bifur- cating periodic solutions are derived with the normal form theory and the center manifold theory. The global existence of periodic solutions is also established with the method of Wu (Wu, J. H. Symmetric functional differential equations and neural networks with memory. Transactions of the American Mathematical Society 350(12), 4799-4838 (1998)). 相似文献
14.
This paper takes into consideration a damped harmonic oscillator model with delayed feedback. After transforming the model into a system of first-order delayed differential equations with a single discrete delay, the single stability switch and multiple stability switches phenomena as well as the existence of Hopf bifurcation of the zero equilibrium of the system are explored by taking the delay as the bifurcation parameter and analyzing in detail the associated characteristic equation. Particularly, in view of the normal form method and the center manifold reduction for retarded functional differential equations, the explicit formula determining the properties of Hopf bifurcation including the direction of the bifurcation and the stability of the bifurcating periodic solutions are given. In order to check the rationality of our theoretical results, numerical simulations for some specific examples are also carried out by means of the MATLAB software package. 相似文献
15.
In this paper, a physiological model of invasive blood-glucose (BG) measurement is employed to consider the diabetic treatment by the external auxiliary system, i.e., artificial pancreas (AP). For such system, there are two time delays, i.e., technological and liver's physiological delay, where the former comes from external auxiliary system with the active pancreas inputting. The technological delay and the infection degree of patients are considered as two controlled parameters to regulate the BG level of patients. This two parameters can also lead to the non-resonant double Hopf bifurcations. The classification and unfolding for the non-resonant double Hopf bifurcation are performed in terms of non-linear dynamics. The results show that such controlled parameters are very important. They can determine the efficiency for the diabetic treatment. It implies whether the diabetic patients recover or are still tormented by the simple or complex glucose fluctuation. The results have also been promising applications on analyzing, predicting and optimizing the medical outcome, evaluating the medical risk and feasibility. The physiological meaning in this paper is that one is able to achieve the better medical outcomes for the different patients by controlling the technological delay qualitatively. 相似文献
16.
We analyze a second-order, nonlinear delay-differential equation with negative feedback. The characteristic equation for the linear stability of the equilibrium is completely solved, as a function of two parameters describing the strength of the feedback and the damping in the autonomous system. The bifurcations occurring as the linear stability is lost are investigated by the construction of a center manifold: The nature of Hopf bifurcations and more degenerate, higher-codimension bifurcations are explicitly determined. 相似文献
17.
We investigated the structure of the so-called first Hopf bifurcation surface associated to a differential equation with two time delays. A geometrical approach leading naturally to a number theoretic approach provides rigourous results which are corroborated by previous numerical and experimental (optical compound resonator) results. 相似文献
18.
The stability and bifurcation of the trivial solution in the two-dimensional differential equation of a model describing human respiratory system with time delay were investigated. Formulas about the stability of bifurcating periodic solution and the directionof Hopf bifurcation were exhibited by applying the normal form theory and the center manifold theorem.Furthermore, numerical simulation was carried out. 相似文献
19.
A mathematical model is presented for four-wheel-steeringvehicles, with the time delay in driver's response and the nonlinearityin lateral tyre forces taken into account. It is proved that thevehicle-driver system has a trivial steady state motion, as well aseight non-trivial steady state motions due to the nonlinearity of tyreforces. The asymptotic stability and Hopf bifurcation of the trivialsteady state are analyzed for two control strategies ofrear-wheel-steering. It is shown through the numerical simulations thatthe four-wheel-steering technique based on the bilinear control strategyworks better when the driver's response involves time delay. 相似文献
20.
The van der Pol equation with a distributed time delay is analyzed. Itslinear stability is investigated by employing the Routh–Hurwitzcriteria. Moreover, the local asymptotic stability conditions are alsoderived. By using the mean time delay as a bifurcation parameter, themodel is found to undergo a sequence of Hopf bifurcations. The directionand the stability criteria of the bifurcating periodic solutions areobtained by the normal form theory and the center manifold theorem. Somenumerical simulation examples for justifying the theoretical analysisare also given. 相似文献
|