首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
This paper is the second one in the series of two papers devoted to detailed investigation of the response regimes of a linear oscillator with attached nonlinear energy sink (NES) under harmonic external forcing and assessment of possible application of the NES for vibration absorption and mitigation. In this paper, we study the performance of a strongly nonlinear, damped vibration absorber with relatively small mass attached to a periodically excited linear oscillator. We present a nonlinear absorber tuning procedure in the vicinity of (1:1) resonance which provides the best total system energy suppression, using analytical and numerical tools. A linear absorber is also tuned according to the same criterion of total system energy suppression as the nonlinear one. Both optimally tuned absorbers are compared under common parameters of damping, external forcing but different absorber stiffness characteristics; certain cases for which nonlinear absorber is preferable over the linear one are revealed and confirmed numerically.  相似文献   

2.
Pilipchuk  V.N. 《Meccanica》2000,35(6):497-517
Principal trajectories of forced vibration of linear and nonlinear continuous systems are introduced as such motions in which the system is equivalent to a Newtonian particle in the function space of the system configurations. The corresponding 'effective mass' of the particle gives physical characteristics of the system response, so that zero effective mass is associated with resonance. The methodology can be viewed as a complementary tool to the method of normal modes, when considering the class of forced vibrating systems, since the related basis accounts for the system physical properties as well as the external forcing factor. In particular, it is shown that a two degrees of freedom system can possess an infinite discrete set of in-phase and out-of-phase forced vibrations of the normal modes type. The corresponding forcing vector-functions obey the second Newton law due to the definition of principal trajectories.  相似文献   

3.
Reduced order models for the dynamics of geometrically exact planar rods are derived by projecting the nonlinear equations of motion onto a subspace spanned by a set of proper orthogonal modes. These optimal modes are identified by a proper orthogonal decomposition processing of high-resolution finite element dynamics. A three-degree-of-freedom reduced system is derived to study distinct categories of motions dominated by a single POD mode. The modal analysis of the reduced system characterizes in a unique fashion for these motions, since its linear natural frequencies are near to the natural frequencies of the full-order system. For free motions characterized by a single POD mode, the eigen-vector matrix of the derived reduced system coincides with the principal POD-directions. This property reflects the existence of a normal mode of vibration, which appears to be close to a slow invariant manifold. Its shape is captured by that of the dominant POD mode. The modal analysis of the POD-based reduced order system provides a potentially valuable tool to characterize the spatio-temporal complexity of the dynamics in order to elucidate connections between proper orthogonal modes and nonlinear normal modes of vibration.  相似文献   

4.
Analysis of strongly nonlinear (vibro-impact) systems revealed an existence of nonlinear modes of vibration with spatial and temporal concentration of energy. The modes can be realised, for example, through intensification of the vibration process by condensing the vibration into a sequence of collisions for impulsive action of the tools to the media being treated or can be as a result of some discontinuity (slackening of a contact, arrival of crack, etc.) in the structure. The use of the nonlinear modes to develop useful mechanical work leads to necessity of excitation and control of resonance in ill-defined dynamical systems. This is due to the poorly predictable response of the media being treated. Excitation, stabilisation and control of a nonlinear mode at the top intensity in such systems is an engineering challenge and needs a new method of adaptive control for its realisation. Such a control technique was developed with the use of self-exciting mechatronic systems. The excitation of the nonlinear mode in such systems is a result of artificial instability of mechanical system conducted by positive electronic feedback. The instability is controlled by intelligent identification of the mode and active tracing of the optimal relationship between phase shifting and limitation in the feedback circuitry. This method of control is known as autoresonance. Applications of autoresonant control for development of the new machines are described. The paper is a revised and extended version of authors’ presentation at ASME 2004 International Mechanical Engineering Congress, Anaheim, CA, USA. An erratum to this article can be found at  相似文献   

5.
We explore the conservative and dissipative dynamics of a two-degree-of-freedom (2-DoF) system consisting of a linear oscillator and a lightweight nonlinear rotator inertially coupled to it. When the total energy of the system is large enough, the motion of the rotator is, generically, chaotic. Moreover, we show that if the damping of the rotator is sufficiently small and the damping of the linear oscillator is even smaller, then the system passes through a cascade of resonance captures (transient internal resonances) as the total energy gradually decreases. Rather unexpectedly, all these captures have the same principal frequency but correspond to different nonlinear normal modes (NNMs). In each NNM, the rotator is phase-locked into periodic motion with two frequencies. The NNMs differ by the ratio of these frequencies, which is approximately an integer for each NNM. Essentially non-integer ratios lead to incommensurate periods of ??slow?? and ??fast?? motions of the rotator and, thus, to its chaotic behavior between successive resonance captures. Furthermore, we show that these cascades of resonance captures lead to targeted energy transfer (TET) from the linear oscillator to the rotator, with the latter serving, in essence, as a nonlinear energy sink (NES). Since the inertially-coupled NES that we consider has no linearized natural frequency, it is capable of engaging in resonance with the linear oscillator over broad frequency and energy ranges. The results presented herein indicate that the proposed rotational NES appears to be a promising design for broadband shock mitigation and vibration energy harvesting.  相似文献   

6.
Mitsi  S.  Natsiavas  S.  Tsiafis  I. 《Nonlinear dynamics》1998,16(1):23-39
An analysis is presented for a class of two degree of freedom weakly nonlinear oscillators, with symmetric restoring force. Conditions of one-to-three internal resonance and subharmonic external resonance of the lower vibration mode are assumed to be satisfied simultaneously. As a consequence, the second vibration mode may also be under the action of external primary resonance. Initially, a set of slow-flow equations is derived, governing the amplitudes and phases of approximate long time response of these oscillators, by applying an asymptotic analytical method. Determination of several possible types of steady-state motions is then reduced to solution of sets of algebraic equations. For all these solution types, appropriate stability analysis is also performed. In the second part of the study, this analysis is applied to an example mechanical system. First, a systematic search is performed, revealing effects of system parameters on the existence and stability properties of periodic motions. Frequency-response diagrams are presented and attention is focused on understanding the evolution and interaction of the various solution branches as the external forcing and nonlinearity parameters are varied. Finally, numerical integration of the equations of motion demonstrates that the system exhibits quasiperiodic or chaotic response for some parameter combinations.  相似文献   

7.
Donnell equations are used to simulate free nonlinear oscillations of cylindrical shells with imperfections. The expansion, which consists of two conjugate modes and axisymmetric one, is used to analyze shell oscillations. Amplitudes of the axisymmetric motions are assumed significantly smaller, than the conjugate modes amplitudes. Nonlinear normal vibrations mode, which is determined by shell imperfections, is analyzed. The stability and bifurcations of this mode are studied by the multiple scales method. It is discovered that stable quasiperiodic motions appear at the bifurcations points. The forced oscillations of circular cylindrical shells in the case of two internal resonances and the principle resonance are analyzed too. The multiple scales method is used to obtain the system of six modulation equations. The method for stability analysis of standing waves is suggested. The continuation algorithm is used to analyze fixed points of the system of the modulation equations.  相似文献   

8.
Seismic base isolation by nonlinear mode localization   总被引:1,自引:0,他引:1  
Summary In this paper, the performance of a nonlinear base-isolation system, comprised of a nonlinearly sprung subfoundation tuned in a 1∶1 internal resonance to a flexible mode of the linear primary structure to be isolated, is examined. The application of nonlinear localization to seismic isolation distinguishes this study from other base-isolation studies in the literature. Under the condition of third-order smooth stiffness nonlinearity, it is shown that a localized nonlinear normal mode (NNM) is induced in the system, which confines energy to the subfoundation and away from the primary or main structure. This is followed by a numerical analysis wherein the smooth nonlinearity is replaced by clearance nonlinearity, and the system is excited by ground motions representing near-field seismic events. The performance of the nonlinear system is compared with that of the corresponding linear system through simulation, and the sensitivity of the isolation system to several design parameters is analyzed. These simulations confirm the existence of the localized NNM, and show that the introduction of simple clearance nonlinearity significantly reduces the seismic energy transmitted to the main structure, resulting in significant attenuation in the response. This work was supported in part by the National Science Foundation Grant CMS 00-00060. The authors are grateful for this support.  相似文献   

9.
A nonlinear combined structure consisted of isolator and absorber with time-delayed coupling active control is proposed in this study, whose vibration suppression effectiveness and control mechanism are investigated. The mathematical model of the combined structure is obtained and stability analysis for different structural parameters and time delay are firstly carried out, which provides a general guideline for the ranges of active control parameters. Then the combined effect of nonlinearity and time delay on vibration suppression and energy transfer is discussed in details based on the analysis of control mechanism by the method of multiple scales. Since the time-delayed nonlinear absorber can induce internal resonance between different modes, the vibration energy at low frequencies can be transferred to high frequency mode and the vibration of the fundamental frequency range is thus suppressed. This paper provides a novel application of internal resonance in vibration suppression of an Absorber–Isolator-Combined structure.  相似文献   

10.
The background of this work is related to passive vibration control of a two degree-of-freedom master system attached to an essentially nonlinear slave absorber aimed to attenuate vibrations by irreversibly transferring energy to a localized nonlinear normal mode (nonlinear normal modes should be considered here according to the definition from Rosenberg in J. Appl. Mech., 28:275–283, 1961). Such a nonlinear absorber which has no preferential frequency is theoretically able to capture several nonlinear resonances. The main purpose is here to bring insight in what is actually going on when two linear modes are in competition for energy transfer. An original asymptotic analysis using two small parameters enables one to build a scenario that improves the understanding of resonance mechanisms and to forecast which mode will be first attenuated by means of energy transfer. Numerical benchmark simulations corroborate the reliability of obtained scenario.  相似文献   

11.
Periodic synchronous regimes of motion are investigated in symmetric homogeneous system of coupled essentially nonlinear oscillators with time delays. Such regimes are similar to nonlinear normal modes (NNMs), known for corresponding conservative system without delays, and can be found analytically. Unlikely the conservative counterpart, the system possesses “oval” modes with constant phase shift between the oscillators, in addition to symmetric/antisymmetric and localized regimes of motion. Numeric simulation demonstrates that the “oval” modes may be attractors of the phase flow. These attractors are particular case of phase-locked solutions, rather ubiquitous in the system under investigation.  相似文献   

12.
基于增量热场理论,利用Hamilton变分原理,通过引入与张拉力和垂度相关的无量纲参数,建立了考虑温度变化影响下斜拉索非线性动力学模型,并推导其面内/外非线性运动微分方程。考虑斜拉索受端部激励,利用Galerkin法得到离散后的无穷维常微分方程组。面内和面外运动各取前两阶模态,向前和向后扫频,利用龙格-库塔法数值积分求解常微分方程组,得到共振区域的幅频响应曲线。算例分析表明,温度变化和斜拉索固有频率呈反比例关系;温度变化会导致斜拉索共振特性发生定性和定量的改变,如共振区间发生漂移、跳跃点位置发生移动、共振响应幅值发生改变;端部位移激励下,温度变化有可能导致斜拉索更多模态受到激发,从而影响各阶模态的能量以及模态间的能量传递。  相似文献   

13.
Jiao  Tengfei  Zhang  Shutian  Sun  Min  Huang  Decai 《Nonlinear dynamics》2023,111(10):9049-9058

This study presents numerical simulations of the resonance of a finite-length granular chain of dissipative grains driven by a harmonically vibrated tube. Multiple gradual resonant modes, namely non-resonance mode, partial-resonance mode, and complete-resonance mode, are identified. With a fixed vibration frequency, increasing vibration acceleration leads to a one-one-one increase in the number of grains participating in resonance, which is equal to the number of grain-wall collisions in a vibration period. Compared with the characteristic time of the grain–grain and the grain–wall collisions, the time of free flight plays a dominant role in grain motion. This situation results in the occurrence of large opening separation gaps between the grains and independent grain–grain and grain–wall collisions. A general master equation that describes the dependence of the system energy on the length of the granular chain and the number of grain–wall collisions is established, and it is in good agreement with the simulation results. We observe a gradual step-jump increase in system energy when the vibration acceleration is continuously increased, which is dedicated to an individual energy injection. The phase diagrams in the spaces of packing density and vibration acceleration, chain length and vibration acceleration show that shorter granular chain and larger packing density favor the occurrence of complete-resonance mode.

  相似文献   

14.
In this study, the forced vibration of a curved pipe conveying fluid resting on a nonlinear elastic foundation is considered. The governing equations for the pipe system are formed with the consideration of viscoelastic material, nonlinearity of foundation, external excitation, and extensibility of centre line. Equations governing the in-plane vibration are solved first by the Galerkin method to obtain the static in-plane equilibrium configuration. The out-of-plane vibration is simplified into a constant coefficient gyroscopic system. Subsequently, the method of multiple scales (MMS) is developed to investigate external first and second primary resonances of the out-of-plane vibration in the presence of three-to-one internal resonance between the first two modes. Modulation equations are formed to obtain the steady state solutions. A parametric study is carried out for the first primary resonance. The effects of damping, nonlinear stiffness of the foundation, internal resonance detuning parameter, and the magnitude of the external excitation are investigated through frequency response curves and force response curves. The characteristics of the single mode response and the relationship between single and two mode steady state solutions are revealed for the second primary resonance. The stability analysis is carried out for these plots. Finally, the approximately analytical results are confirmed by the numerical integrations.  相似文献   

15.
Forced, weakly nonlinear oscillations of a two degree-of-freedom autoparametric vibration absorber system are studied for resonant excitations. The method of averaging is used to obtain first-order approximations to the response of the system. A complete bifurcation analysis of the averaged equations is undertaken in the subharmonic case of internal and external resonance. The locked pendulum mode of response is found to bifurcate to coupled-mode motion for some excitation frequencies and forcing amplitudes. The coupled-mode response can undergo Hopf bifurcation to limit cycle motions, when the two linear modes are mistuned away from the exact internal resonance condition. The software packages AUTO and KAOS are used and a numerically assisted study of the Hopf bifurcation sets, and dynamic steady solutions of the amplitude or averaged equations is presented. It is shown that both super-and sub-critical Hopf bifurcations arise and the limit cycles quickly undergo period-doubling bifurcations to chaos. These imply chaotic amplitude modulated motions for the system.  相似文献   

16.
Coupled strongly nonlinear oscillators, whose characteristic is close to linear for low amplitudes but becomes infinitely growing as the amplitude approaches certain limit, are considered in this paper. Such a model may serve for understanding the dynamics of elastic structures within the restricted space bounded by stiff constraints. In particular, this study focuses on the evolution of vibration modes as the energy is gradually pumped into or dissipates out of the system. For instance, based on the two degrees of freedom system, it is shown that the in-phase and out-of-phase motions may follow qualitatively different scenarios as the system’ energy increases. So the in-phase mode appears to absorb the energy with equipartition between the masses. In contrast, the out-of-phase mode provides equal energy distribution only until certain critical energy level. Then, as a result of bifurcation of the 1:1 resonance path, one of the masses becomes a dominant energy receiver in such a way that it takes the energy not only from the main source but also from another mass.  相似文献   

17.
We present a theoretical study of the dynamics of the coupled system of Jiang, McFarland, Bergman, and Vakakis. It comprises a harmonically excited linear subsystem weakly coupled to an essentially nonlinear oscillator. We explored the rich dynamics exhibited by this coupled system by determining its periodic responses and their bifurcations. Not surprisingly, we found a lot of interesting dynamics over a broad frequency range: cyclic-fold, Hopf, symmetry-breaking, and period-doubling bifurcations; phase-locked motions; regions with multiple coexisting solutions; hysteresis; and chaos. We did not find any occurrence of energy transfer via modulation (also known as zero-to-one internal resonance); theoretically, the possibility of its occurrence was ruled out for systems with weak nonlinearity and damping. Finally, we investigated the ef fectiveness of the so-called nonlinear energy sink (NES) in vibration attenuation of forced linear structures. We found that the NES results in an increase in the vibration amplitude of the linear subsystem, especially when the damping is low, contrary to the claim made by Jiang et al. Also, we did not find any indication of nonlinear energy pumping or localization of energy in the NES, away from the directly forced linear subsystem, indicating that the NES is not ef fective for controlling the vibrations of forced linear structures.  相似文献   

18.
In this paper, the nonlinear vibration of a single-walled carbon nanotube conveying fluid is investigated utilizing a multidimensional Lindstedt–Poincaré method. Considering the geometric large deformation of the single-walled carbon nanotube and external harmonic excitation force, based on nonlocal elastic theory and Euler–Bernoulli beam theory, the nonlinear vibration equation of a fluid-conveying single-walled carbon nanotube is established. Analyzing the equation through the multidimensional Lindstedt–Poincaré method, and from the solvability condition of the nonlinear vibration equation, the cubic algebraic equation which indicates the amplitude–frequency relation is obtained. Based on the root discriminant of the cubic equation, the first order primary response of the pinned–pinned carbon nanotube is discussed. The relations among internal resonance, the amplitude and frequency of the external excitation force are analyzed in detail. When the external excite force frequency is around the first mode natural frequency, the first mode primary resonance occurs. If simultaneously the first two modes natural frequency ratio is around 3, internal resonance occurs and the internal resonance region depends on the amplitude of external excitation force.  相似文献   

19.
The vibrations of thin rectangular plate with geometrical nonlinearity are analyzed. The models of plate vibrations with different numbers of degrees-of-freedom are derived. It is deduced that two degrees-of-freedoms are enough to describe low-frequency nonlinear dynamics of plates. Nonlinear normal modes are used to analyze the system dynamics. If vibrations amplitudes are increased, single-mode plate vibrations are transformed into two mode ones. In this case, internal resonance conditions are not observed. Such transformation of vibration is described using Kauderer?CRosenberg nonlinear normal modes.  相似文献   

20.
The fundamental and subharmonic resonances of a nonlinear cyclic assembly are examined using the asymptotic method of multiple-scales. The system consists of a number of identical cantilever beams coupled by means of weak linear stiffnesses. Assuming beam inextensionality, geometric nonlinearities arise due to longitudinal inertia and the nonlinear relation between beam curvature and transverse displacement. The governing nonlinear partial differential equations are discretized by a Galerkin procedure and the resulting set of coupled ordinary differential equations is solved using an asymptotic analysis. The unforced assembly is known to possess localized nonlinear normal modes, which give rise to a very complicated topological structure of fundamental and subharmonic response curves. In contrast to the linear system which exhibits as many forced resonances as its number of degrees of freedom, the nonlinear system is found to possess a number of additional resonance branches which have no counterparts in linear theory. Some of the additional resonances are spatially localized, corresponding to motions of only a small subset of periodic elements. The analytical results are verified by numerical Poincaré maps, and the forced localization features of the nonlinear assembly are demonstrated by considering its response to impulsive excitations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号