首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nonlinear parametric vibration and stability is investigated for an axially accelerating rectangular thin plate subjected to parametric excitations resulting from the axial time-varying tension and axial time-varying speed in the magnetic field. Consid- ering geometric nonlinearity, based on the expressions of total kinetic energy, potential energy, and electromagnetic force, the nonlinear magneto-elastic vibration equations of axially moving rectangular thin plate are derived by using the Hamilton principle. Based on displacement mode hypothesis, by using the Galerkin method, the nonlinear para- metric oscillation equation of the axially moving rectangular thin plate with four simply supported edges in the transverse magnetic field is obtained. The nonlinear principal parametric resonance amplitude-frequency equation is further derived by means of the multiple-scale method. The stability of the steady-state solution is also discussed, and the critical condition of stability is determined. As numerical examples for an axially moving rectangular thin plate, the influences of the detuning parameter, axial speed, axial tension, and magnetic induction intensity on the principal parametric resonance behavior are investigated.  相似文献   

2.
In this present work, the nonlinear response of a single-link flexible Cartesian manipulator with payload subjected to a pulsating axial load is determined. The nonlinear temporal equation of motion is derived using D’Alembert’s principle and generalised Galerkin’s method. Due to large transverse deflection of the manipulator, the equation of motion contains cubic geometric and inertial types of nonlinearities along with linear and nonlinear parametric and forced excitation terms. Method of normal forms is used to determine the approximate solution and to study the dynamic stability and bifurcations of the system. These results are found to be in good agreement with those obtained by numerically solving the temporal equation of motion. Influences of amplitude of the base excitation, mass ratio, and amplitude of static and dynamic axial load on the steady state responses of the system are investigated for three different resonance conditions. For some specific conditions, the results obtained in this work are found to be in good agreement with the previously published experimental work. The results obtained in this work will find applications in the design of flexible Cartesian manipulators with payload.  相似文献   

3.
This paper investigates nonlinear combined parametric transverse vibrations of a traveling viscoelastic beam. The combined parametric excitations originate from the time dependency of axial velocity as well as axial tension. Two parametric excitations are enforced into the system amid the internal resonance. Two-frequency parametric resonance is assumed to be comprised of combination parametric resonance of first two modes due to the time dependency of axial velocity, and the principal parametric resonance of first mode due to the variable tension in the axial direction in the presence of internal resonance for viscoelastic beam is considered for the first time. The higher-order integro-partial differential equation of motion is solved through direct method of multiple scales. Continuation algorithm is employed to explore the stability and various bifurcations of the nonlinear dynamic system. Focus has been made to study the effect of variations of fluctuating tension component, fluctuating velocity component independently and when combined, internal and parametric frequency detuning parameters and damping on the system response. Frequency response equilibrium curves are complex and unique in shapes which are embodied with various bifurcations. Such steady-state behavior is not seen in the existent literature. With variation in fluctuating velocity component, the number of steady-state nontrivial equilibrium curves increases to three and with variation in fluctuating axial tension, they become four. In this process, significant changes in stability, number and position of various bifurcations like supercritical and subcritical pitchfork, Hopf and saddle node are observed. Unlike the previous study, the shape, stability and bifurcations of equilibrium curves under the combined effect of axial velocity and tension closely match with the case of fluctuating axial tension component. The effect of variation in internal and parametric frequency detuning parameter is more realized for second mode compared to first mode. A comparison of the present work with a previous one where axial tension is variable reveals many qualitative and quantitative similarities and dissimilarities. But when compared with earlier work where axial velocity is constant, significant dissimilarities are surfaced. The system displays a wide ranging dynamic behavior including stable periodic, quasiperiodic and unstable chaotic behavior. The numerical computation depicts various nonlinear characteristics and oscillatory behaviors which are not found so far in the existent literature.  相似文献   

4.
陈玲  唐有绮 《力学学报》2019,51(4):1180-1188
轴向运动结构的横向参激振动一直是非线性动力学领域的研究热点之一. 目前研究较多的是轴向速度摄动的动力学模型,参数激励由速度的简谐波动产生. 但在工程应用中,存在轴向张力波动的运动结构较为广泛,而针对轴向张力摄动的模型研究较少. 本文研究了时变张力作用下轴向变速运动黏弹性梁的分岔与混沌. 考虑随着时间周期性变化的轴向张力,计入线性黏性阻尼,采用Kelvin模型的黏弹性本构关系,给出了梁横向非线性 振动的积分--偏微分控制方程. 首先应用四阶Galerkin截断方法将控制方程离散化,然后采用四阶Runge-Kutta方法计算系统的数值解,进而确定其动力学行为. 基于梁中点的横向位移和速度的数值结果,仿真了梁沿平均轴速、张力摄动幅值、张力摄动频率以及黏弹性系数变化的倍周期分岔与混 沌运动,并且通过计算系统的最大李雅普诺夫指数来识别其混沌行为. 结果表明:较小的平均轴速有助于梁的周期运动,梁在临界速度附近容易发生倍周期分岔与混沌行为. 随着张力摄动幅值的增大,梁的振动幅值的混沌区间不断增大. 较小的黏弹性系数和张力摄动频率更容易使梁发生混沌运动. 最后,给出时程图、频谱图、相图以及Poincaré 映射图来确定梁的混沌运动.   相似文献   

5.
The potential of harvesting vibratory energy via a bistable beam subjected to subharmonic parametric excitations is investigated. The vibrating structure is a buckled beam with two stable equilibria separated by a potential barrier. The beam is subjected to a superposition of a static axial load beyond its buckling load and a harmonic axial excitation whose frequency is around twice the frequency of the buckled beam’s first vibration mode. A macro-fiber composite patch is attached to one side of the beam to convert the strain energy resulting from the beam’s oscillation into electricity. The study considers two regimes of excitations: an amplitude sweep and a frequency sweep. In the first regime, the amplitude of excitation is quasi-statically varied while the excitation frequency is tuned at twice the natural frequency of the first vibration mode. In the second regime, the excitation frequency is swept forward and backward around the subharmonic resonant frequency while the amplitude of excitation is kept constant. A theoretical model which governs the electromechanical coupling of the transverse vibrations of the beam and the output voltage is used to monitor the response as the excitation parameters are changed. An experimental setup is also built and a series of tests is performed to validate the theoretical findings. It is shown that, depending on the amplitude and frequency of excitation, the harvester can perform small-amplitude periodic intra-well motion, intra- and inter-well chaotic motions, as well as periodic inter-well motions. Experimental results also show that, as compared to the classical linear resonance, utilizing the sub-harmonic resonance of a bistable energy harvesters can result in a broadband frequency response.  相似文献   

6.
Nonlinear dynamics of an inclined beam subjected to a moving load   总被引:1,自引:0,他引:1  
In this paper, the nonlinear dynamic response of an inclined pinned-pinned beam with a constant cross section, finite length subjected to a concentrated vertical force traveling with a constant velocity is investigated. The study is focused on the mode summation method and also on frequency analysis of the governing PDEs equations of motion. Furthermore, the steady-state response is studied by applying the multiple scales method. The nonlinear response of the beam is obtained by solving two coupled nonlinear PDEs governing equations of planar motion for both longitudinal and transverse oscillations of the beam. The dynamic magnification factor and normalized time histories of mid-pint of the beam are obtained for various load velocity ratios and the outcome results have been illustrated and compared to the results with those obtained from traditional linear solution. The appropriate parametric study considering the effects of the linear viscous damping, the velocity of the traveling load, beam inclination angle under zero or nonzero axial load are carried out to capture the influence of the effect of large deflections caused by stretching effects due to the beam’s immovable ends. It was seen that quadratic nonlinearity renders the softening effect on the dynamic response of the beam under the act of traveling load. Also in the case where the object leaves the inclined beam, its planar motion path is derived and the targeting accuracy is investigated and compared with those from the rigid solution assumption. Moreover, the stability analysis of steady-state response for the modes equations having quadratic nonlinearity was carried out and it was observed from the frequency response curves that for the considered parameters in the case of internal-external primary resonance, both saturation phenomenon and jump phenomenon can be predicted for the longitudinal excitation.  相似文献   

7.
This paper is focused on nonlinear dynamics of a shell-shaped workpiece during high speed milling. The shell-shaped workpiece is modeled as a double-curved cantilevered shell subjected to a cutting force with time delay effects. Equations of motion are derived by using the Hamilton principle based on the classical shell theory and von Karman strain-displacement relation. The resulting nonlinear partial differential equations are reduced to a two-degree-of-freedom nonlinear system by applying the Galerkin approach. The averaging method is used to obtain four-dimensional averaged equations for the case of foundational parametric resonance and 1:2 internal resonance. Using a numerical method, the dynamics of the cantilevered shell-shaped workpiece is studied under time-delay effects, parametric excitation, and forcing excitation. It is found that time-delay parameters have great impact on chaotic motion. With increasing amplitude of forcing and parametric excitations, the shell-shaped workpiece exhibits different dynamic behavior.  相似文献   

8.
In this study, multi-mode parametric excitation of a simply supported plate under time-varying and non-uniform edge loading is modeled and the solution is found. Equations for multi-mode parametric excitation of a simply supported plate are derived using stress distributions within the plate as well as on the edges, considering both the effects of non-uniform edge loading and the non-linearity caused by the large deflection. The multi-mode equations are coupled by first-order linear terms, even in the case of simply supported boundary conditions, due to the non-uniform edge loading. The perturbation solutions of two-mode parametric excitation are examined by the method of multiple scales. For the edge loading, which consists of a uniform term as well as a non-uniform one, equations could be coupled or de-coupled by parametric excitation terms, and the numbers and values of the resonance frequencies of the parametric excitations could also differ, depending on whether the non-uniform term of the edge loading is time-varying or not. In addition to the resonant frequencies of the case when only the uniform term of the edge loading is time-varying, there are additional combination resonances at the vicinity of the sum of two natural frequencies of each mode when the non-uniform term of the non-uniform edge loading is time-varying.  相似文献   

9.
In this paper, research on nonlinear dynamic behavior of a string-beam coupled system subjected to parametric and external excitations is presented. The governing equations of motion are obtained for the nonlinear transverse vibrations of the string-beam coupled system. The Galerkin's method is employed to simplify the governing equations to a set of ordinary differential equations with two degrees-of-freedom. The case of 1:2 internal resonance between the modes of the beam and string, principal parametric resonance for the beam, and primary resonance for the string is considered. The method of multiple scales is utilized to analyze the nonlinear responses of the string-beam coupled system. Based on the averaged equation obtained here, the techniques of phase portrait, waveform, and Poincare map are applied to analyze the periodic and chaotic motions. It is found from numerical simulations that there are obvious jumping phenomena in the resonant response–frequency curves. It is indicated from the phase portrait and Poincare map that period-4, period-2, and periodic solutions and chaotic motions occur in the transverse nonlinear vibrations of the string-beam coupled system under certain conditions. An erratum to this article is available at .  相似文献   

10.
This paper presents the analysis of the global bifurcations and chaotic dynamics for the nonlinear nonplanar oscillations of a cantilever beam subjected to a harmonic axial excitation and transverse excitations at the free end. The governing nonlinear equations of nonplanar motion with parametric and external excitations are obtained. The Galerkin procedure is applied to the partial differential governing equation to obtain a two-degree-of-freedom nonlinear system with parametric and forcing excitations. The resonant case considered here is 2:1 internal resonance, principal parametric resonance-1/2 subharmonic resonance for the in-plane mode and fundamental parametric resonance–primary resonance for the out-of-plane mode. The parametrically and externally excited system is transformed to the averaged equations by using the method of multiple scales. From the averaged equation obtained here, the theory of normal form is applied to find the explicit formulas of normal forms associated with a double zero and a pair of pure imaginary eigenvalues. Based on the normal form obtained above, a global perturbation method is utilized to analyze the global bifurcations and chaotic dynamics in the nonlinear nonplanar oscillations of the cantilever beam. The global bifurcation analysis indicates that there exist the heteroclinic bifurcations and the Silnikov type single-pulse homoclinic orbit in the averaged equation for the nonlinear nonplanar oscillations of the cantilever beam. These results show that the chaotic motions can occur in the nonlinear nonplanar oscillations of the cantilever beam. Numerical simulations verify the analytical predictions.  相似文献   

11.
In this paper, we use the asymptotic perturbation method based on the Fourier expansion and the temporal rescaling to investigate the nonlinear oscillations and chaotic dynamics of a simply supported rectangular plate made of functionally graded materials (FGMs) subjected to a through-thickness temperature field together with parametric and external excitations. Material properties are assumed to be temperature-dependent. Based on the Reddy’s third-order plate theory, the governing equations of motion for the plate are derived using the Hamilton’s principle. The Galerkin procedure is employed to obtain a two-degree-of-freedom nonlinear system including the quadratic and cubic nonlinear terms. The resonant case considered here is 1:2 internal resonance, principal parametric resonance-1/2 subharmonic resonance. Based on the averaged equation in polar coordinate form, the stability of steady state solutions is analyzed. The phase portrait, waveform and Poincaré map are used to analyze the periodic and chaotic motions of the FGM rectangular plate. It is found that the FGM rectangular plate exhibits the chaotic motions under certain circumstances. It is seen that the nonlinear dynamic responses of the FGM rectangular plate are more sensitive to transverse excitation. The excitation force can be used as a controlling factor which can change the response of the FGM rectangular plate from periodic motion to the chaotic motion.  相似文献   

12.
In this paper,the nonlinear dynamic behavior of a string-beam coupled system subjected to external,parametric and tuned excitations is presented.The governing equations of motion are obtained for the nonlinear transverse vibrations of the string-beam coupled system which are described by a set of ordinary differential equations with two degrees of freedom.The case of 1:1 internal resonance between the modes of the beam and string,and the primary and combined resonance for the beam is considered.The method of multiple scales is utilized to analyze the nonlinear responses of the string-beam coupled system and obtain approximate solutions up to and including the second-order approximations.All resonance cases are extracted and investigated.Stability of the system is studied using frequency response equations and the phase-plane method.Numerical solutions are carried out and the results are presented graphically and discussed.The effects of the different parameters on both response and stability of the system are investigated.The reported results are compared to the available published work.  相似文献   

13.
Using Reddy’s high-order shear theory for laminated plates and Hamilton’s principle, a nonlinear partial differential equation for the dynamics of a deploying cantilevered piezoelectric laminated composite plate, under the combined action of aerodynamic load and piezoelectric excitation, is introduced. Two-degree of freedom (DOF) nonlinear dynamic models for the time-varying coefficients describing the transverse vibration of the deploying laminate under the combined actions of a first-order aerodynamic force and piezoelectric excitation were obtained by selecting a suitable time-dependent modal function satisfying the displacement boundary conditions and applying second-order discretization using the Galerkin method. Using a numerical method, the time history curves of the deploying laminate were obtained, and its nonlinear dynamic characteristics, including extension speed and different piezoelectric excitations, were studied. The results suggest that the piezoelectric excitation has a clear effect on the change of the nonlinear dynamic characteristics of such piezoelectric laminated composite plates. The nonlinear vibration of the deploying cantilevered laminate can be effectively suppressed by choosing a suitable voltage and polarity.  相似文献   

14.
研究了轴向加速黏弹性Timoshenko梁的非线性参数振动。参数激励是由径向变化张力和轴向速度波动引起的。引入了取决于轴向加速度的径向变化张力,同时还考虑了有限支撑刚度对张力的影响。应用广义哈密尔顿原理建立了Timoshenko梁耦合平面运动的控制方程和相关的边界条件。黏弹性本构关系采用Kelvin模型并引入物质时间导数。耦合方程简化为具有随时间和空间变化系数的积分-偏微分型非线性方程。采用直接多尺度法分析了Timoshenko梁的组合参数共振。根据可解性条件得到了Timoshenko梁的稳态响应,并应用Routh-Hurvitz判据确定了稳态响应的稳定性。最后通过一系列数值例子描述了黏弹性系数、平均轴向速度、剪切变形系数、转动惯量系数、速度脉动幅值、有限支撑刚度参数以及非线性系数对稳态响应的影响。  相似文献   

15.
In this paper, the dynamic instability of thin laminated composite plates subjected to harmonic in-plane loading is studied based on nonlinear analysis. The equations of motion of the plate are developed using von Karman-type of plate equation including geometric nonlinearity. The nonlinear large deflection plate equations of motion are solved by using Galerkin’s technique that leads to a system of nonlinear Mathieu-Hill equations. Dynamically unstable regions, and both stable- and unstable-solution amplitudes of the steady-state vibrations are obtained by applying the Bolotin’s method. The nonlinear dynamic stability characteristics of both antisymmetric and symmetric cross-ply laminates with different lamination schemes are examined. A detailed parametric study is conducted to examine and compare the effects of the orthotropy, magnitude of both tensile and compressive longitudinal loads, aspect ratios of the plate including length-to-width and length-to-thickness ratios, and in-plane transverse wave number on the parametric resonance particularly the steady-state vibrations amplitude. The present results show good agreement with that available in the literature.  相似文献   

16.
A new procedure on random uncertainty modeling is presented for vibration analysis of a straight pipe conveying fluid when the pipe is fixed at both ends. Taking real conveying condition into account, several randomly uncertain loads and a motion constraint are imposed on the pipe and its corresponding equations of motion, which are established from the Euler–Bernoulli beam theory and the nonlinear Lagrange strain theory previously. Based on the stochastically nonlinear dynamic theory and the Galerkin method, the equations of motion are reduced to the finite discretized ones with randomly uncertain excitations, from which the vibration characteristics of the pipe are investigated in more detail by some previously developed numerical methods and a specific Poincaré map. It is shown that, the vibration modes change not only with the frequency of the harmonic excitation but also with the strength and spectrum width of the randomly uncertain excitations, quasi-periodic-dominant responses can be observed clearly from the point sets in the Poincaré’s cross-section. Moreover, the nonlinear elastic coefficient and location of the motion constraint can be adjusted properly to reduce the transverse vibration amplitude of the pipe.  相似文献   

17.
Chin  Char-Ming  Nayfeh  Ali H. 《Nonlinear dynamics》1999,20(2):131-158
The nonlinear planar response of a hinged-clamped beam to a principal parametric resonance of either its first or second mode or a combination parametric resonance of the additive type of its first two modes is investigated. The analysis accounts for mid-plane stretching, a static axial load, a restraining spring at one end, and modal damping. The natural frequency of the second mode is approximately three times the natural frequency of the first mode for a range of static axial loads, resulting in a three-to-one internal resonance. The method of multiple scales is used to attack directly the governing nonlinear integral-partial-differential equation and associated boundary conditions and derive three sets of four first-order nonlinear ordinary-differential equations describing the modulation of the amplitudes and phases of the first two modes in the cases of (a) principal parametric resonance of either the first or the second mode, and (b) a combination parametric resonance of the additive type of these modes. Periodic motions and periodically and chaotically modulated motions of the beam are determined by investigating the equilibrium and dynamic solutions of the modulation equations. For the case of principal parametric resonance of the first mode or combination parametric resonance of the additive type, trivial and two-mode solutions are possible, whereas for the case of parametric resonance of the second mode, trivial, single, and two-mode solutions are possible. The trivial and two-mode equilibrium solutions of the modulation equations may undergo either a supercritical or a subcritical Hopf bifurcation, depending on the magnitude of the axial load. For some excitation parameters, we found complex responses including period-doubling bifurcations and blue-sky catastrophes.  相似文献   

18.
Minghui Yao  Wei Zhang 《Meccanica》2014,49(2):365-392
This paper investigates the multi-pulse global bifurcations and chaotic dynamics of the high-dimension nonlinear system for a laminated composite piezoelectric rectangular plate by using an extended Melnikov method in the resonant case. Using the von Karman type equations, Reddy’s third-order shear deformation plate theory and Hamilton’s principle, the equations of motion are derived for the laminated composite piezoelectric rectangular plate with combined parametric excitations and transverse excitation. Applying the method of multiple scales and Galerkin’s approach to the partial differential governing equation, the four-dimensional averaged equation is obtained for the case of 1:2 internal resonance and primary parametric resonance. From the averaged equations obtained, the theory of normal form is used to derive the explicit expressions of normal form with a double zero and a pair of pure imaginary eigenvalues. Based on the explicit expressions of normal form, the extended Melnikov method is used for the first time to investigate the Shilnikov type multi-pulse homoclinic bifurcations and chaotic dynamics of the laminated composite piezoelectric rectangular plate. The necessary conditions of the existence for the Shilnikov type multi-pulse chaotic dynamics of the laminated composite piezoelectric rectangular plate are analytically obtained. Numerical simulations also illustrate that the Shilnikov type multi-pulse chaotic motions can also occur in the laminated composite piezoelectric rectangular plate. Overall, both theoretical and numerical studies demonstrate that the chaos in the Smale horseshoe sense exists for the laminated composite piezoelectric rectangular plate.  相似文献   

19.
In this paper, a multi-degree-of-freedom lumped parameter coupled vehicle-bridge dynamic model is proposed considering the nonlinearities of suspension and tire stiffness/damping and the nonlinear foundation of bridge. In terms of modelling, the continuous expressions of the kinetic energy, potential energy and the dissipation function are constructed. The dynamic equations of the coupled vehicle-bridge system (CVBS) are derived and discretized using Galerkin’s scheme, which yield a set of second-order nonlinear ordinary differential equations with coupled terms. The numerical simulations are conducted by using the Newmark-β integration method to perform a parametric study of the effects on excitation amplitude, suspension stiffness and position relation. The bifurcation diagram, 3-D frequency spectrum and largest Lyapunov exponent are demonstrated in order to better understand the vibration properties and interaction between the vehicle and bridge with the key system parameters. It can be found that the nonlinear dynamic characteristics such as parametric resonance, jump phenomena, periodic, quasi-periodic and chaotic motions are strongly attributed to the interaction between vehicle and bridge. Significantly, under the combined internal and external excitations, the vibration amplitudes of the CVBS have a certain degree of dependence on the external excitation. Suspension stiffness could lead to complex dynamics such as the higher-order bifurcations increase and the chaotic regions broaden. The increasing of distance could effectively control the nonlinear vibration of CVBS. The application of the proposed nonlinear coupled vehicle-bridge model would bring higher computational accuracy and make it possible to design the vehicle and bridge simultaneously.  相似文献   

20.
The nonlinear dynamic behaviors of a double cable-stayed shallow arch model are investigated under the one-to-one-to-one internal resonance among the lowest modes of cables and the shallow arch and external primary resonance of cables. The in-plane governing equations of the system are obtained when the harmonic excitation is applied to cables. The excitation mechanism due to the angle-variation of cable tension during motion is newly introduced. Galerkin's method and the multi-scale method are used to obtain ordinary differential equations(ODEs) of the system and their modulation equations, respectively. Frequency-and force-response curves are used to explore dynamic behaviors of the system when harmonic excitations are symmetrically and asymmetrically applied to cables. More importantly, comparisons of frequency-response curves of the system obtained by two types of trial functions, namely, a common sine function and an exact piecewise function, of the shallow arch in Galerkin's integration are conducted.The analysis shows that the two results have a slight difference; however, they both have sufficient accuracy to solve the proposed dynamic system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号