首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
A simple and reliable method based on capillary electrophoresis with electrochemical detection (CE–ED) was applied to study the effect of aerobic exercises on creatinine and uric acid concertration in saliva and urine. The pH value, the running buffer concentration, the SDS concentration, separation voltage, injection time and the potential applied to the working electrode were investigated to find the optimum conditions. The detection limits (S/N = 3) for creatinine and uric acid were 3.6 μmol L?1 and 0.86 μmol L?1, respectively. This method was successfully used in the rapid analysis of creatinine and uric acid in saliva samples. After aerobic exercises, creatinine concentration decreased, and uric acid concentration increased in saliva. In urine, the concentrations of creatinine and uric acid both increased after exercise.  相似文献   

2.
《Analytical letters》2012,45(12):1976-1988
A sensitive and selective electrochemical method for the simultaneous determination of dopamine (DA) and uric acid (UA) was developed using a pyrogallol red modified carbon paste electrode. Under the optimized conditions, the peak current was linearly dependent on 1.0–700.0 μmol L?1 DA and 50.0–1000.0 μmol L?1 UA. The detection limits for DA and UA were 0.78 μmol L?1 and 35 μmol L?1, respectively. Finally, this method was also examined for the determination of DA and uric acid in real samples such as drugs and urine.  相似文献   

3.

Micellar electrokinetic capillary chromatography was used for the determination of picoxystrobin and pyraclostrobin. The background electrolyte consisted of borate buffer (40 mmol L−1 pH 8.5), SDS (30 mmol L−1) and acetonitrile (15% in volume). Runs were made at 25 °C with 25 kV applied potential. The developed method was applied to analyte fortified urine samples. On-line analyte concentration, combined with a capillary of a longer optical path length, allowed limits of quantification of 8.6 × 10−8 mol L−1 for picoxystrobin and 1.8 × 10−7 mol L−1 for pyraclostrobin.

  相似文献   

4.
A sensitive method based on derivatization with pentafluorophenylhydrazine then headspace gas chromatography–mass spectrometry has been used for analysis of malondialdehyde in human urine. Preparation of urine sample by one-step derivatization/evaporation was performed by reaction of malondialdehyde with pentafluorophenylhydrazine in a headspace vial for 10 min; the derivatives were then injected in GC–MS analysis. The reaction was performed at pH 3, and total analysis time was 35 min. The method detection limit was 0.04 μg L?1. For MDA concentrations of 2.0 and 10.0 μg L?1 the relative standard deviation was less then 5%. The concentration of MDA in urine was measured to be 0.199 ± 0.252 μmol g?1 creatinine (0.022 ± 0.028 μmol mmol?1 creatinine).  相似文献   

5.
Bai  Xin-Wei  Song  Cui-Hua  You  Jin-Mao  Sun  Zhi-Wei  Fu  Yan-Yan  Li  Guo-Liang 《Chromatographia》2010,71(11):1125-1129

A simple and mild method for the determination of fatty acids (C1 – C10) based on a condensation reaction using 7-aminonaphthalene-1,3-disulfonic acid (ANDSA) as labeling reagent with capillary zone electrophoresis has been developed. The detection was performed with a diode array detector at 254 nm. A 58.5 cm × 50 μm i.d. (50 cm effective length) untreated fused-silica capillary was used. To optimize the separation conditions, the background electrolyte concentration, column temperature, voltage and other factors were evaluated. The optimal separation conditions were as follows: 30 mmol L−1 borate buffer (pH 9.5), 15 mmol L−1 β-CD, temperature at 20 °C, pressure 50 mbar and injection time 8 s. Under the established conditions, 10 fatty acid derivatives could be well-separated within 17 min. The linearity was in the range of 0.07–5.0 μmol L−1. Detection limits (at a signal-to-noise ratio of 3) were in the range of 0.027–0.042 μmol L−1. The fatty acids from the extracted Funaria Hedw. and Selaginella samples were determined with satisfactory results.

  相似文献   

6.
We have fabricated, in a single step, carbon ceramic electrodes modified with a poly(acridine orange) film containing reduced graphene oxide. They display electrocatalytic activity to ascorbic acid (AA) and uric acid (UA) at pH 4.5. The anodic peak potentials of AA and UA are separated by 276 mV so that they can be well resolved in cyclic voltammetry. UA and AA were simultaneously determined in a mixture at working potentials of 170 and 400 mV, respectively. Under optimized conditions, the calibration curves for AA and UA cover the 0.8–5,000 μM and 0.6–900 μM concentration range, respectively, while detection limits are 0.3 μM and 0.2 μM. The electrode was applied to determine AA and UA in urine samples.
Figure
DPV curves of RGO–PAO/CCE in the phosphate buffer solution (pH 4.5) containing 5.0?×?10?5 mol L?1 AA with different concentration of UA (a?→?f: 0, 1, 3, 5, 7, 9?×?10?6 mol L?1)  相似文献   

7.
A selective sensitive RP-LC–UV/VIS method with pre-column derivatization was developed for the determination of copper in human urine at a trace level. This method is based on the selective reaction of 2,9-dimethyl-1,10-phenanthroline (neocuproine) with copper(I) to produce a yellow-orange hydrophobic complex in a neutral or slightly acidic buffer solution (adjusted to pH 5.9). Copper(II) was reduced to copper(I) ions by ascorbic acid as a weak reducer, which was added both to urine sample and mobile phase, respectively. A hydrophobic copper(I)–neocuproine chelate was determined by RP-LC–UV/VIS using a monolithic column Chromolith Performance RP-8e (100 × 4 mm I.D.) at 30.0 ± 0.1 °C with a methanol: aqueous buffer (pH 5.9, ammonium acetate and ascorbic acid 2.8 mmol L?1) mobile phase at flow rate of 2.00 mL min?1. Sample injection volume was 20 μL and detection was done at 453 nm. The method was validated over a concentration range of 0.09–11.50 μmol L?1. The LOD of copper in human urine was found to be 0.07 μmol L?1 concentration level, suitable for clinical analysis. The precision of the results, reported as the RSD, was below 4.6 % for copper concentration within range 0.5–5.0 μmol L?1 in the spiked human urine samples.  相似文献   

8.
《Analytical letters》2012,45(2):248-258
A poly(diallyldimethylammonium chloride)-graphene-multiwalled carbon nanotube modified glassy carbon electrode was fabricated and evaluated by cyclic voltammetry and differential pulse voltammetry. The modified electrode offered high sensitivity, selectivity, excellent long-term stability, and electrocatalytic activity for uric acid and dopamine. This sensor showed wide linear dynamic ranges of 5.0 to 350.0 µmol L?1 for uric acid and 10.0 to 400.0 µmol L?1 for dopamine in the presence of 500 µmol L?1 ascorbic acid. The limits of detection were 0.13 for uric acid and 0.55 µmol L?1 for dopamine. This functionalized electrode has potential application in bioanalysis and biomedicine.  相似文献   

9.
Zhang  Chunhua  Wu  Huiqin  Huang  Xiaolan  Zhu  Zhixin  Luo  Huitai  Huang  Fang  Lin  Xiaoshan 《Chromatographia》2012,75(9-10):499-511

A sensitive and selective method for simultaneous determination of 29 toxic alkaloids in human blood and 31 in urine using high-performance liquid chromatography–electrospray ionization-tandem mass spectrometry was developed and validated. The samples were diluted with 0.1 mol L−1 HCl, and the target alkaloids were purified by solid phase extraction. The separation of 31 alkaloids was carried out on a C18 column using a gradient mobile phase with 10 mmol L−1 ammonium formate in water with 0.1% formic acid and methanol at the rate of 0.25 mL min−1. The triple-quadrupole mass spectrometer equipped with an electrospray source in the positive mode was set up in the dynamic multiple reactions monitoring mode (dynamic MRM) to detect the ion transitions of 31 alkaloids. The calibration curves were linear over a range of 0.5–400, 1–400, or 4–400 μg L−1 for target alkaloids in human blood and urine, and the correlation coefficients (r 2) was higher than 0.9943. The limit of determination and limit of quantification were 0.2–1 and 0.5–4 μg L−1 for blood and urine, respectively. The only exceptions were sanguinarine and chelerythrine in human blood. All the target alkaloids were stable under the test condition. In addition, the solvent effect and reconstituted solution were investigated. The method was validated and proved to be accurate and precise over the studied concentrations and suitable for poisoning diagnosis and forensic toxicology.

  相似文献   

10.
A novel amperometric uric acid biosensor was fabricated by immobilizing uricase on an electrospun nanocomposite of chitosan-carbon nanotubes nanofiber (Chi–CNTsNF) covering an electrodeposited layer of silver nanoparticles (AgNPs) on a gold electrode (uricase/Chi–CNTsNF/AgNPs/Au). The uric acid response was determined at an optimum applied potential of ?0.35 V vs Ag/AgCl in a flow-injection system based on the change of the reduction current for dissolved oxygen during oxidation of uric acid by the immobilized uricase. The response was directly proportional to the uric acid concentration. Under the optimum conditions, the fabricated uric acid biosensor had a very wide linear range, 1.0–400 μmol L?1, with a very low limit of detection of 1.0 μmol L?1 (s/n?=?3). The operational stability of the uricase/Chi–CNTsNF/AgNPs/Au biosensor (up to 205 injections) was excellent and the storage life was more than six weeks. A low Michaelis–Menten constant of 0.21 mmol L?1 indicated that the immobilized uricase had high affinity for uric acid. The presence of potential common interfering substances, for example ascorbic acid, glucose, and lactic acid, had negligible effects on the performance of the biosensor. When used for analysis of uric acid in serum samples, the results agreed well with those obtained by use of the standard enzymatic colorimetric method (P?>?0.05).
Figure
An amperometric uric acid biosensor was developed by immobilized uricase on an electrospun nanocomposite of chitosan-carbon nanotubes nanofiber (Chi-CNTsNF) covering an electrodeposited silver nanoparticles layer (AgNPs) on gold electrode (uricase/Chi-CNTsNF/AgNPs/Au). The uric acid response was determined at an optimal applied potential of -0.35 V vs Ag/AgCl based on the change of the reduction current for dissolved oxygen.  相似文献   

11.

A method for isotachophoretic determination of potassium and ammonium cations in fertilizers and silage was developed. A capillary of 0.4 mm i.d. and 100 mm effective length made of fluorinated ethylene–propylene copolymer was filled with an electrolyte system consisting of 10 mmol L−1 RbOH + 0.1% (w/v) hydroxyethylcellulose, adjusted to pH 9.0 with l-histidine (leading electrolyte) and 10 mmol L−1 lithium citrate (terminating electrolyte). Using contactless conductivity detection, the calibration curves in the tested concentration range up to 0.5 mmol L−1 were linear for both cations. The concentration detection limits for potassium and ammonium were 2.9 and 2.7 μmol L−1, respectively. RSD values of step lengths (n = 6) were 1.3% for potassium and 1.5% for ammonium. The separation time was about 20 min. Similar results were obtained with cesium cation used as the leading ion, however, in the system with rubidium better resolution of other cations present in tested matrices was reached. The elaborated method is simple to perform, sufficiently sensitive and accurate and can be recommended as an alternative procedure to the methods used so far for the determination of potassium and ammonium.

  相似文献   

12.
《Analytical letters》2012,45(11):2001-2012
Abstract

A simple, rapid, injection chemiluminescence method is described for the determination of prulifloxacin, a commonly used antibiotic. A strong chemiluminescence signal was detected when a mixture of the analyte and tris-(4,7-diphenyl-1,10-phenanthrolinedisulfonic acid)ruthenium(II) was injected into cerium(IV) sulfate. The chemiluminescence signal is proportional to the concentration of prulifloxacin in the range 4.0 × 10?8–9.0 × 10?6 mol L?1. The detection limit is 1.0 × 10?8 mol L?1, and the relative standard deviation is 2.2% (n = 11) for the determination of 8.0 × 10?7 mol L?1 prulifloxacin. The proposed method was successfully applied to the determination of prulifloxacin in pharmaceutical preparations in capsules, spiked serum, and urine samples.  相似文献   

13.
《Analytical letters》2012,45(4):689-704
Abstract

The voltammetric behavior of dopamine was studied at a glassy carbon electrode modified by cysteic acid, based on electrochemical oxidation of L ‐cysteine. The modified electrode showed strong electrocatalytic activity towards dopamine and good selectivity. In a phosphate buffer solution (pH 7.4), the anodic peak current obtain from the differential pulse voltammetry of dopamine was linearly dependent on its concentration in the range of 5×10?9 to 4.0×10?6mol · L?1, with a detection limit of 2×10?9mol · L?1. The low‐cost modified electrode had been applied to the determination of dopamine in human serum and urine samples with satisfactory results.  相似文献   

14.
Imipramine (IMP), a tricyclic antidepressant drug, is commonly prescribed for treatment of psychiatric patients suffering from different forms of depression. The appropriate amount of drug intake is crucial to ensure the optimum therapeutic effects minimizing severe collateral effects and toxicity. Therefore, the monitoring of imipramine is essential for its clinical applications. Herein, we report an electrochemical sensor based on a composite of ferrocenecarboxylic acid (FCA), β-cyclodextrin (CD), and oxidized multi-walled carbon nanotubes (f-CNT) modified glassy carbon electrode for detection of IMP at low potential. The electrochemical behavior of the proposed sensor was characterized by scanning electron microscopy, Raman spectroscopy, and cyclic voltammetry. The results show that imipramine determination using the proposed sensor occurs around 0 V vs Ag/AgCl in phosphate buffer pH 7.0. The calibration curves were obtained by cyclic voltammetry and differential pulse voltammetry, with linear ranges of 10 to 350 μmol L?1 and 0.1 to 10 μmol L?1, respectively. A detection limit of 0.03 μmol L?1 was obtained for the detection of IMP. The sensor was applied for IMP determination in psychotropic drugs and urine samples and the results show a recovery percentage between 99 and 101% for the analyte.  相似文献   

15.
A polymerized film of Adizol Black B (ABB) on the surface of glassy carbon (GC) electrode was prepared for the simultaneous determination of ascorbic acid (AA), epinephrine (EP), and uric acid (UA). This new electrode presented an excellent electrocatalytic activity towards the oxidation of AA, EP, and UA by differential pulse voltammetry method. The oxidation peaks of the three compounds were well defined and had the enhanced peak currents. The separation of the oxidation peak potentials for AA–EP and EP–UA were about 180 and 130 mV, respectively. The calibration curves obtained for AA, EP, and UA were in the ranges of 2.0–1,970.0, 0.1–64.0, and 0.1–1,700.0 μmol L–1, respectively. The detection limits (S/N?=?3) were 0.01, 0.007, and 0.02 μmol L–1 for AA, EP, and UA, respectively. The diffusion coefficient and the catalytic rate constant for the oxidation reaction of EP at poly(ABB) film-coated GC electrode were calculated as 1.54(±0.10)?×?10?4 cm2 s?1 and 4.5?×?103 mol?1 L s?1, respectively. The present method was applied to the determination of EP in pharmaceutical, AA in commercially available vitamin C tablet, and UA in urine samples.  相似文献   

16.
ABSTRACT

The flow injection catalytic spectrophotometry is proposed for the determination of nitrite based on the catalytic effect on the redox reaction between methylene blue and potassium bromate in acidic medium. The reaction is monitored spectrophotometrically by measuring the decrease in the absorbance of methylene blue at the maximum absorption wavelength of 664 nm. The method is characterised by low solvent consumption and easy automatic continuous analysis. It has higher sensitivity and lower detection limit. Experimental analysis conditions of the flow injection-catalytic photometry are optimised, and the best analysis conditions are: the concentration of the potassium bromate is 0.068 mol L?1; the concentration of the phosphoric acid in oxidation liquid is 0.045 mol L?1; the concentration of the methylene blue in colour-substrate solution is 2.4 mg L?1, the volume of sample ring is 200 μL; the reaction coil is around 7 m in length; the inject time is 50 s and analysis time is 70 s. Under the optimal conditions, the linear range is from 10 to 500 μg L?1 and the detection limit is 1 μg L?1. The nitrate standard solution is continuously determined with a mass concentration of 300 μg L?1. The RSD is determined to be 1.41% (n = 10). The nitrite in water samples, which were from the Half Acre pond, the Ink River and the Small West lake in a campus, was determined respectively by this method. A satisfactory standard addition recovery of 96.7%–103.9% was obtained.  相似文献   

17.

Taurine is an amino acid which is not incorporated into proteins but found in the cytosol of many mammalian cells, in high concentrations (2–30 mM). Increase in plasma taurine concentration has already been reported after surgical trauma, X-radiation, muscle necrosis, carbon tetrachloride-induced liver damage, and paracetamol overdose. Plasma taurine concentration was measured using LC with fluorescence detection following derivatization by o-phtalaldehyde plus 3-mercapto-propionic acid and α-aminobutyric acid as internal standard. Under these conditions the retention time of taurine was 10 min. This method was sensitive enough, to quantify 150 pg mL−1 and detect 50 pg mL−1 of taurine ranging normally between 65 and 179 mmol L−1 (8–22 μg mL−1). The validated method allowed simple determination of human plasma taurine in pharmacokinetic and biomarker studies.

  相似文献   

18.
Liao  Qie Gen  Li  Wei Hong  Luo  Lin Guang 《Chromatographia》2013,76(23):1677-1682

High performance liquid chromatography coupled with resonance light scattering detection was developed for separation and determination of heparin in plasma. A good chromatographic separation was achieved using an aminex HPX-87H column (300 mm × 7.8 mm, 9 μm) and a mobile phase of 5.0 mmol L−1 H2SO4 at the flow rate of 0.5 mL min−1. The enhanced resonance light scattering signals were derived from a large aggregate formation between heparin and cetyltrimethylammonium bromide used as the molecular recognition probe. The parameters of the post-column reaction (pH, concentration and flow rate of the reagent, length of the reaction coil, and temperature) were optimized. The limit of detection for heparin in plasma was 0.2 mg L−1. The method has been applied to the determination of heparin in dialysis patient plasmas.

  相似文献   

19.
Yang  Qing  Chen  Xiaoqing  Jiang  Xinyu 《Chromatographia》2013,76(23):1641-1647

A novel, efficient, and environmentally friendly method—supramolecular solvent liquid–liquid microextraction (SMS-LLME) combined with high-performance liquid chromatography (HPLC)—was first established for the determination of p-nitrophenol and o-nitrophenol in water samples. Several important parameters influencing extraction efficiency, such as the type and volume of extraction solvent, pH of sample, temperature, salt effect, extraction time, and stirring rate, were optimized in detail. Under the optimal conditions, the enrichment factor was 166 for p-nitrophenol and 160 for o-nitrophenol, and the limits of detection by HPLC were 0.26 and 0.58 μg L−1, respectively. Excellent linearity with coefficients of correlation from 0.9996 to 0.9997 was observed in the concentration range of 2–1,000 μg L−1. The ranges of intra- and interday precision (n = 5) at 100 μg L−1 of nitrophenols were 5.85–7.76 and 10.2–11.9 %, respectively. The SMS-LLME method was successfully applied for preconcentration of nitrophenols in environmental water samples.

  相似文献   

20.
Jin  Wei  Yang  Yong-Jian  Wang  Wei-Yu  Ye  Jian-Nong 《Chromatographia》2009,69(11):1221-1226

A suitable method that allows, for the first time, the simultaneous determination of nine antibiotics which may help the therapy of acne vulgaris by rapid liquid chromatography with diode array detection in 7 min is presented in this work. An SB RP18 (50 × 4.6 mm; 1.8 μm particle size) column was used with the mobile phase consisting of a mixture of 0.1 mol L−1 potassium dihydrogen phosphate (pH 2.5) and acetonitrile at the gradient elution program. The correlation coefficients were all above 0.9999 in the linear range between 4–100 μg mL−1, the average spiked recoveries (n = 6) were 92.2–103.2% with RSD ranging from 0.04 to 4.5% depending on the target analytes. The method detection limits were in the range of 0.02–0.2 μg mL−1 in anti-acne cosmetics. The analysis of real cosmetic preparations demonstrated the fitness for the whole analytical procedure. The proposed method appeared therefore as a sound alternative for official testing method, which could overcome the general problems of time consuming, lack of the specificity and precision difficulty.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号