首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The electrochemical CO2 reduction reaction (CO2RR) to yield synthesis gas (syngas, CO and H2) has been considered as a promising method to realize the net reduction in CO2 emission. However, it is challenging to balance the CO2RR activity and the CO/H2 ratio. To address this issue, nitrogen-doped carbon supported single-atom catalysts are designed as electrocatalysts to produce syngas from CO2RR. While Co and Ni single-atom catalysts are selective in producing H2 and CO, respectively, electrocatalysts containing both Co and Ni show a high syngas evolution (total current >74 mA cm−2) with CO/H2 ratios (0.23–2.26) that are suitable for typical downstream thermochemical reactions. Density functional theory calculations provide insights into the key intermediates on Co and Ni single-atom configurations for the H2 and CO evolution. The results present a useful case on how non-precious transition metal species can maintain high CO2RR activity with tunable CO/H2 ratios.  相似文献   

2.
Removal of CO2 from CO gas mixtures is a necessary but challenging step during production of ultra‐pure CO as processed from either steam reforming of hydrocarbons or CO2 reduction. Herein, two hybrid ultramicroporous materials (HUMs), SIFSIX‐3‐Ni and TIFSIX‐2‐Cu‐i , which are known to exhibit strong affinity for CO2, were examined with respect to their performance for this separation. The single‐gas CO sorption isotherms of these HUMs were measured for the first time and are indicative of weak affinity for CO and benchmark CO2/CO selectivity (>4000 for SIFSIX‐3‐Ni ). This prompted us to conduct dynamic breakthrough experiments and compare performance with other porous materials. Ultra‐pure CO (99.99 %) was thereby obtained from CO gas mixtures containing both trace (1 %) and bulk (50 %) levels of CO2 in a one‐step physisorption‐based separation process.  相似文献   

3.
Herein, we have specifically designed two metalated porous organic polymers ( Zn-POP and Co-POP ) for syngas (CO+H2) production from gaseous CO2. The variable H2/CO ratio of syngas with the highest efficiency was produced in water medium (without an organic hole scavenger and photosensitizer) by utilizing the basic principle of Lewis acid/base chemistry. Also, we observed the formation of entirely different major products during photocatalytic CO2 reduction and water splitting with the help of the two catalysts, where CO (145.65 μmol g−1 h−1) and H2 (434.7 μmol g−1 h−1) production were preferentially obtained over Co-POP & Zn-POP , respectively. The higher electron density/better Lewis basic nature of Co-POP was investigated further using XPS, XANES, and NH3-TPD studies, which considerably improve CO2 activation capacity. Moreover, the structure–activity relationship was confirmed via in situ DRIFTS and DFT studies, which demonstrated the formation of COOH* intermediate along with the thermodynamic feasibility of CO2 reduction over Co-POP while water splitting occurred preferentially over Zn-POP .  相似文献   

4.
Photoelectrochemical syngas production from aqueous CO2 is a promising technique for carbon capture and utilization. Herein, we demonstrate the efficient and tunable syngas production by integrating a single-atom cobalt-catalyst-decorated α-Fe2O3 photoanode with a bimetallic Ag/Pd alloy cathode. A record syngas production activity of 81.9 μmol cm−2 h−1 (CO/H2 ratio: ≈1 : 1) was achieved under artificial sunlight (AM 1.5 G) with an excellent durability. Systematic studies reveal that the Co single atoms effectively extract the holes from Fe2O3 photoanodes and serve as active sites for promoting oxygen evolution. Simultaneously, the Pd and Ag atoms in bimetallic cathodes selectively adsorb CO2 and protons for facilitating CO production. Further incorporation with a photovoltaic, to allow solar light (>600 nm) to be utilized, yields a bias-free CO2 reduction device with solar-to-CO and solar-to-H2 conversion efficiencies up to 1.33 and 1.36 %, respectively.  相似文献   

5.
Photothermal CO2 reduction is one of the most promising routes to efficiently utilize solar energy for fuel production at high rates. However, this reaction is currently limited by underdeveloped catalysts with low photothermal conversion efficiency, insufficient exposure of active sites, low active material loading, and high material cost. Herein, we report a potassium-modified carbon-supported cobalt (K+−Co−C) catalyst mimicking the structure of a lotus pod that addresses these challenges. As a result of the designed lotus-pod structure which features an efficient photothermal C substrate with hierarchical pores, an intimate Co/C interface with covalent bonding, and exposed Co catalytic sites with optimized CO binding strength, the K+−Co−C catalyst shows a record-high photothermal CO2 hydrogenation rate of 758 mmol gcat−1 h−1 (2871 mmol gCo−1 h−1) with a 99.8 % selectivity for CO, three orders of magnitude higher than typical photochemical CO2 reduction reactions. We further demonstrate with this catalyst effective CO2 conversion under natural sunlight one hour before sunset during the winter season, putting forward an important step towards practical solar fuel production.  相似文献   

6.
Electrochemical reactors that electrolytically convert CO2 into higher-value chemicals and fuels often pass a concentrated hydroxide electrolyte across the cathode. This strongly alkaline medium converts the majority of CO2 into unreactive HCO3 and CO32− byproducts rather than into CO2 reduction reaction (CO2RR) products. The electrolysis of CO (instead of CO2) does not suffer from this undesirable reaction chemistry because CO does not react with OH. Moreover, CO can be more readily reduced into products containing two or more carbon atoms (i. e., C2+ products) compared to CO2. We demonstrate here that an electrocatalyst layer derived from copper phthalocyanine ( CuPc ) mediates this conversion effectively in a flow cell. This catalyst achieved a 25 % higher selectivity for acetate formation at 200 mA/cm2 than a known state-of-art oxide-derived Cu catalyst tested in the same flow cell. A gas diffusion electrode coated with CuPc electrolyzed CO into C2+ products at high rates of product formation (i. e., current densities ≥200 mA/cm2), and at high faradaic efficiencies for C2+ production (FEC2+; >70 % at 200 mA/cm2). While operando Raman spectroscopy did not reveal evidence of structural changes to the copper molecular complex, X-ray photoelectron spectroscopy suggests that the catalyst undergoes conversion to a metallic copper species during catalysis. Notwithstanding, the ligand environment about the metal still impacts catalysis, which we demonstrated through the study of a homologous CuPc bearing ethoxy substituents. These findings reveal new strategies for using metal complexes for the formation of carbon-neutral chemicals and fuels at industrially relevant conditions.  相似文献   

7.
The electrochemical CO2 reduction reaction (CO2RR) to yield synthesis gas (syngas, CO and H2) has been considered as a promising method to realize the net reduction in CO2 emission. However, it is challenging to balance the CO2RR activity and the CO/H2 ratio. To address this issue, nitrogen‐doped carbon supported single‐atom catalysts are designed as electrocatalysts to produce syngas from CO2RR. While Co and Ni single‐atom catalysts are selective in producing H2 and CO, respectively, electrocatalysts containing both Co and Ni show a high syngas evolution (total current >74 mA cm?2) with CO/H2 ratios (0.23–2.26) that are suitable for typical downstream thermochemical reactions. Density functional theory calculations provide insights into the key intermediates on Co and Ni single‐atom configurations for the H2 and CO evolution. The results present a useful case on how non‐precious transition metal species can maintain high CO2RR activity with tunable CO/H2 ratios.  相似文献   

8.
Utilizing sustainable energy for chemical activation of small molecules, such as CO2, to produce important chemical feedstocks is highly desirable. The simultaneous production of CO/H2 mixture (syngas) from photoreduction of CO2 and H2O is highly promising. However, the relationships between structure, composition, crystallinity, and photocatalytic performance are still indistinct. Here, amorphous ultrathin CoO nanowires and polyoxometalate incorporated nanowires with even lower crystallinity were synthesized. The POM-incorporated ultrathin nanowires exhibit high photocatalytic syngas production activity, reaching H2 and CO evolution rates of 11555 and 4165 μmol g−1 h−1 respectively. Further experiments indicate that the ultrathin morphology and incorporation of POM both contribute to the superior performance. Multiple characterizations reveal the enhanced charge–hole separation efficiency of the catalyst would facilitate the photocatalysis.  相似文献   

9.
Here, the reduction chemistry of mono- and binuclear α-diimine-Re(CO)3 complexes with proton responsive ligands and their application in the electrochemically-driven CO2 reduction catalysis are presented. The work was aimed to investigate the impact of 1) two metal ions in close proximity and 2) an internal proton source on catalysis. Therefore, three different Re complexes, a binuclear one with a central phenol unit, 3 , and two mononuclear, one having a central phenol unit, 1 , and one with a methoxy unit, 2 , were utilised. All complexes are active in the CO2-to-CO conversion and CO is always the major product. The catalytic rate constant kcat for all three complexes is much higher and the overpotential is lower in DMF/water mixtures than in pure DMF (DMF=N,N-dimethylformamide). Cyclic voltammetry (CV) studies in the absence of substrate revealed that this is due to an accelerated chloride ion loss after initial reduction in DMF/water mixtures in comparison to pure DMF. Chloride ion loss is necessary for subsequent CO2 binding and this step is around ten times faster in the presence of water [ 2 : kCl(DMF)≈1.7 s−1; kCl(DMF/H2O)≈20 s−1]. The binuclear complex 3 with a proton responsive phenol unit is more active than the mononuclear complexes. In the presence of water, the observed rate constant kobs for 3 is four times higher than of 2 , in the absence of water even ten times. Thus, the two metal centres are beneficial for catalysis. Lastly, the investigation showed that the phenol unit has no impact on the rate of the catalysis, it even slows down the CO2-to-CO conversion. This is due to an unproductive, competitive side reaction: After initial reduction, 1 and 3 loose either Cl or undergo a reductive OH deprotonation forming a phenolate unit. The phenolate could bind to the metal centre blocking the sixth coordination site for CO2 activation. In DMF, O−H bond breaking and Cl ion loss have similar rate constants [ 1 : kCl(DMF)≈2 s−1, kOH≈1.5 s−1], in water/DMF Cl loss is much faster. Thus, the effect on the catalytic rate is more pronounced in DMF. However, the acidic protons lower the overpotential of the catalysis by about 150 mV.  相似文献   

10.
This study explores the kinetics, mechanism, and active sites of the CO2 electroreduction reaction (CO2RR) to syngas and hydrocarbons on a class of functionalized solid carbon‐based catalysts. Commercial carbon blacks were functionalized with nitrogen and Fe and/or Mn ions using pyrolysis and acid leaching. The resulting solid powder catalysts were found to be active and highly CO selective electrocatalysts in the electroreduction of CO2 to CO/H2 mixtures outperforming a low‐area polycrystalline gold benchmark. Unspecific with respect to the nature of the metal, CO production is believed to occur on nitrogen functionalities in competition with hydrogen evolution. Evidence is provided that sufficiently strong interaction between CO and the metal enables the protonation of CO and the formation of hydrocarbons. Our results highlight a promising new class of low‐cost, abundant electrocatalysts for synthetic fuel production from CO2.  相似文献   

11.
12.
Syngas (CO/H2) is a feedstock for the production of a variety of valuable chemicals and liquid fuels, and CO2 electrochemical reduction to syngas is very promising. However, the production of syngas with high efficiency is difficult. Herein, we show that defective indium selenide synthesized by an electrosynthesis method on carbon paper (γ-In2Se3/CP) is an extremely efficient electrocatalyst for this reaction. CO and H2 were the only products and the CO/H2 ratio could be tuned in a wide range by changing the applied potential or the composition of the electrolyte. In particular, using nanoflower-like γ-In2Se3/CP (F-γ-In2Se3/CP) as the electrode, the current density could be as high as 90.1 mA cm−2 at a CO/H2 ratio of 1:1. In addition, the Faradaic efficiency of CO could reach 96.5 % with a current density of 55.3 mA cm−2 at a very low overpotential of 220 mV. The outstanding electrocatalytic performance of F-γ-In2Se3/CP can be attributed to its defect-rich 3D structure and good contact with the CP substrate.  相似文献   

13.
Photocatalytic conversion of low-concentration CO2 is considered as a promising way to simultaneously mitigate the environmental and energy issues. However, the weak CO2 adsorption and tough CO2 activation process seriously compromise the CO production, due to the chemical inertness of CO2 molecule and the formed fragile metal-C/O bond. Herein, we designed and fabricated oxygen vacancy contained Co3O4 hollow nanoparticles on ordered macroporous N-doped carbon framework (Vo−HCo3O4/OMNC) towards photoreduction of low-concentration CO2. In situ spectra and ab initio molecular dynamics simulations reveal that the constructed oxygen vacancy is able to break the local structural symmetry of Co−O−Co sites. The formation of asymmetric active site switches the CO2 configuration from a single-site linear model to a multiple-sites bending one with a highly stable configuration, enhancing the binding and structural polarization of CO2 molecules. As a result, Vo−HCo3O4/OMNC shows unprecedent activity in the photocatalytic conversion of low-concentration CO2 (10 % CO2/Ar) under laboratory light source or even natural sunlight, affording a syngas yield of 337.8 or 95.2 mmol g−1 h−1, respectively, with an apparent quantum yield up to 4.2 %.  相似文献   

14.
Photocatalytic syngas (CO and H2) production with CO2 as gas source not only ameliorates greenhouse effect, but also produces valuable chemical feedstocks. However, traditional photocatalytic systems require noble metal or suffers from low yield. Here, we demonstrate that S vacancies ZnIn2S4 (VS-ZnIn2S4) nanosheets are an ideal photocatalyst to drive CO2 reduction into syngas. It is found that building S vacancies can endow ZnIn2S4 with stronger photoabsorption, efficient electron–hole separation, and larger CO2 adsorption, finally promoting both hydrogen evolution reaction (HER) and CO2 reduction reaction (CO2RR). The syngas yield of CO and H2 is therefore significantly increased. In contrast to pristine ZnIn2S4, the syngas yield over VS-ZnIn2S4 can be improved by roughly ≈4.73 times and the CO/H2 ratio is modified from 1:4.18 to 1:1. Total amount of syngas after 12 h photocatalysis is as high as 63.20 mmol g−1 without use of any noble metals, which is even higher than those of traditional noble metal-based catalysts in the reported literatures. This work demonstrates the critical role of S vacancies in mediating catalytic activity and selectivity, and highlights the attractive ability of defective ZnIn2S4 for light-driven syngas production.  相似文献   

15.
Developing low-cost and efficient photocatalysts to convert CO2 into valuable fuels is desirable to realize a carbon-neutral society. In this work, we report that polymer dots (Pdots) of poly[(9,9′-dioctylfluorenyl-2,7-diyl)-co-(1,4-benzo-thiadiazole)] (PFBT), without adding any extra co-catalyst, can photocatalyze reduction of CO2 into CO in aqueous solution, rendering a CO production rate of 57 μmol g−1 h−1 with a detectable selectivity of up to 100 %. After 5 cycles of CO2 re-purging experiments, no distinct decline in CO amount and reaction rate was observed, indicating the promising photocatalytic stability of PFBT Pdots in the photocatalytic CO2 reduction reaction. A mechanistic study reveals that photoexcited PFBT Pdots are reduced by sacrificial donor first, then the reduced PFBT Pdots can bind CO2 and reduce it into CO via their intrinsic active sites. This work highlights the application of organic Pdots for CO2 reduction in aqueous solution, which therefore provides a strategy to develop highly efficient and environmentally friendly nanoparticulate photocatalysts for CO2 reduction.  相似文献   

16.
Inspired by the spongy bone structures, three-dimensional (3D) sponge-like carbons with meso-microporous structures are synthesized through one-step electro-reduction of CO2 in molten carbonate Li2CO3−Na2CO3−K2CO3 at 580 °C. SPC4-0.5 (spongy porous carbon obtained by electrolysis of CO2 at 4 A for 0.5 h) is synthesized with the current efficiency of 96.9 %. SPC4-0.5 possesses large electrolyte ion accessible surface area, excellent wettability and electronical conductivity, ensuring the fast and effective mass and charge transfer, which make it an advcanced supercapacitor electrode material. SPC4-0.5 exhibits a specific capacitance as high as 373.7 F g−1 at 0.5 A g−1, excellent cycling stability (retaining 95.9 % of the initial capacitance after 10000 cycles at 10 A g−1), as well as high energy density. The applications of SPC4-0.5 in quasi-solid-state symmetric supercapacitor and all-solid-state flexible devices for energy storage and wearable piezoelectric sensor are investigated. Both devices show considerable capacitive performances. This work not only presents a controllable and facile synthetic route for the porous carbons but also provides a promising way for effective carbon reduction and green energy production.  相似文献   

17.
Syngas (CO/H2) is a feedstock for the production of a variety of valuable chemicals and liquid fuels, and CO2 electrochemical reduction to syngas is very promising. However, the production of syngas with high efficiency is difficult. Herein, we show that defective indium selenide synthesized by an electrosynthesis method on carbon paper (γ‐In2Se3/CP) is an extremely efficient electrocatalyst for this reaction. CO and H2 were the only products and the CO/H2 ratio could be tuned in a wide range by changing the applied potential or the composition of the electrolyte. In particular, using nanoflower‐like γ‐In2Se3/CP (F‐γ‐In2Se3/CP) as the electrode, the current density could be as high as 90.1 mA cm?2 at a CO/H2 ratio of 1:1. In addition, the Faradaic efficiency of CO could reach 96.5 % with a current density of 55.3 mA cm?2 at a very low overpotential of 220 mV. The outstanding electrocatalytic performance of F‐γ‐In2Se3/CP can be attributed to its defect‐rich 3D structure and good contact with the CP substrate.  相似文献   

18.
The size of support in heterogeneous catalysts can strongly affect the catalytic property but is rarely explored in light-driven catalysis. Herein, we demonstrate the size of TiO2 support governs the selectivity in photothermal CO2 hydrogenation by tuning the metal-support interactions (MSI). Small-size TiO2 loading nickel (Ni/TiO2-25) with enhanced MSI promotes photo-induced electrons of TiO2 migrating to Ni nanoparticles, thus favoring the H2 cleavage and accelerating the CH4 formation (227.7 mmol g−1 h−1) under xenon light-induced temperature of 360 °C. Conversely, Ni/TiO2-100 with large TiO2 prefers yielding CO (94.2 mmol g−1 h−1) due to weak MSI, inefficient charge separation, and inadequate supply of activated hydrogen. Under ambient solar irradiation, Ni/TiO2-25 achieves the optimized CH4 rate (63.0 mmol g−1 h−1) with selectivity of 99.8 %, while Ni/TiO2-100 exhibits the CO selectivity of 90.0 % with rate of 30.0 mmol g−1 h−1. This work offers a novel approach to tailoring light-driven catalytic properties by support size effect.  相似文献   

19.
A dinuclear cobalt complex [Co2(OH)L1](ClO4)3 ( 1 , L1=N[(CH2)2NHCH2(m ‐C6H4)CH2NH(CH2)2]3N) displays high selectivity and efficiency for the photocatalytic reduction of CO2 to CO in CH3CN/H2O (v/v=4:1) under a 450 nm LED light irradiation, with a light intensity of 100 mW cm−2. The selectivity reaches as high as 98 %, and the turnover numbers (TON) and turnover frequencies (TOF) reach as high as 16896 and 0.47 s−1, respectively, with the calculated quantum yield of 0.04 %. Such high activity can be attributed to the synergistic catalysis effect between two CoII ions within 1 , which is strongly supported by the results of control experiments and DFT calculations.  相似文献   

20.
The development of low-cost and efficient electrolyzer components is crucial for practical electrochemical carbon dioxide reduction (ECR). In this study, facile non-woven cellulose-based porous transport layers (PTLs) were developed for high current density CO2-to-CO conversion. By depositing a cobalt phthalocyanine (CoPc) catalyst-layer over the PTLs, we fabricated ECR-functioning gas-diffusion-electrodes (GDEs) for both flow-cell and zero-gap electrolyzers. Under optimal conditions, the Faradaic efficiency of CO (FECO) reached 92 % at a high current density of 200 mA cm−2. Furthering the architecture of the GDEs, CoPc was incorporated into the initial PTL slurry, forming ECR-active PTLs without the need for an additional catalyst-layer. The new GDE-architecture favored the CoPc-distribution by enhancing the contact and interactions with the carbon substrate and demonstrated a stable electrolysis process for over 50 h in a zero-gap cell at 200 mA cm−2 with a FECO of 80 %.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号