首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An exact solution to the problem of indentation with friction of a rigid cylinder into an elastic half-space is presented. The corresponding boundary-value problem is formulated in planar bipolar coordinates, and reduced to a singular integral equation with respect to the unknown normal stress in the slip zones. An exact analytical solution of this equation is constructed using the Wiener-Hopf technique, which allowed for a detailed analysis of the contact stresses, strain, displacement, and relative slip zone sizes. Also, a simple analytical solution is furnished in the limiting case of full stick between the cylinder and half-space.  相似文献   

2.
The paper deals with the estimation of the pressure distribution, the shape of contact and the friction force at the interface of a flat soft elastic solid moving on a rigid half-space with a slightly wavy surface. In this case an unsymmetrical contact is considered and justified with the adhesion hysteresis. For soft solids as rubber and polymers the friction originates mainly from two different contributions: the internal friction due to the viscoelastic properties of the bulk and the adhesive processes at the interface of the two solids. In the paper the authors focus on the latter contribution to friction. It is known, indeed, that for soft solids, as rubber, the adhesion hysteresis is, at least qualitatively, related to friction: the larger the adhesion hysteresis the larger the friction. Several mechanisms may govern the adhesion hysteresis, such as the interdigitation process between the polymer chains, the local small-scale viscoelasticity or the local elastic instabilities. In the paper the authors propose a model to link, from the continuum mechanics point of view, the friction to the adhesion hysteresis. A simple one-length scale roughness model is considered having a sinusoidal profile. For partial contact conditions the detached zone is taken to be a mode I propagating crack. Due to the adhesion hysteresis, the crack is affected by two different values of the strain energy release rate at the advancing and receding edges respectively. As a result, an unsymmetrical contact and a friction force arise. Additionally, the stability of the equilibrium configurations is discussed and the adherence force for jumping out of contact and the critical load for snapping into full contact are estimated.  相似文献   

3.
The paper analyzes the frictional sliding crack at the interface between a semi-infinite elastic body and a rigid one. It gives solutions in complex form for non-homogeneous loading at infinity and explicit solutions for polynomial loading at the interface. It is found that the singularities at the crack tips are different and that they are related to distinct kinematics at the crack tips. Firstly, we postulate that the geometry of the equilibrium crack with crack-tip positions b and a is determined by the conditions of square integrable stresses and continuous displacement at both crack tips. The crack geometry solution is not unique and is defined by any compatible pair (b,a) belonging to a quasi-elliptical curve. Then we prove that, for an equilibrium crack under given applied load, the “energy release rate” Gtip, defined at each crack tip by the Jε-integral along a semi-circular path, centered at the crack tip, with vanishing radius ε, vanishes. For arbitrarily shaped paths embracing the whole crack, with end points on the unbroken zone, the J-integral is path-independent and has the significance of the rate, with respect to the crack length, of energy dissipated by friction on the crack.  相似文献   

4.
We examine experimentally and theoretically the effect of frictional shakedown of a three-dimensional elastic rolling contact. Small oscillations of the local normal forces lead to incremental sliding processes within the area of contact. Consequently, this causes a macroscopic slip motion of the two contacting bodies. If the oscillation amplitude is sufficiently small, the frictional slip ceases after the first few loading periods and a safe shakedown occurs. Otherwise the slip motion is continued and the contact fails.  相似文献   

5.
The contact problem of indentation of a pair of rigid punches with plane bases connected by an elastic beam into the boundary of an elastic half-plane is considered under the conditions of plane strain state. The external load is generated by lumped forces applied to the punches and a uniformly distributed normal load acting on the beam.It is assumed that the contact between the punch and the elastic half-plane can be described by L. A. Galin’s statement, i.e., it is assumed that the adhesion acts in the interior part of each of the contact regions and the tangential stresses obeying the Coulomb law act on their boundaries.With the symmetry taken into account, the problem is stated only for a single punch, and solving this problem is reduced to a system of four singular integral equations for the tangential and normal stresses in the adhesion region and the contact pressure in the sliding zones. The solution of the constitutive system together with three conditions of equilibrium of the system of punches connected by a beam is constructed by direct numerical integration by the method of mechanical quadratures.As a result of the numerical analysis, the contact stress distribution functions were constructed and the values of the sliding zones and the punch rotation angle were determined for various values of the geometric, elastic, and force characteristics.  相似文献   

6.
The plane problem of supersonic steady motion of a body in an elastic medium is solved. Two possible cases of body motion are considered depending on its velocity. In the first case, the body moves at a velocity greater than the velocity of transverse waves but smaller than the velocity of longitudinal waves. In the second case, the body moves at a velocity greater than the velocity of longitudinal waves. An analytic solution of the problem under study is obtained and analyzed. It is shown that friction substantially influences the penetration process.  相似文献   

7.
8.
9.
10.
An asymptotic model for deformation of an elastic space with a rigid thin reinforcing bar is constructed. The elastic modulus of the fiber far exceeds the elastic modulus of the matrix. The shape optimization problem for the reinforcing bar is solved on the basis of the uniform strength condition. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 1, pp. 120–128, January–February, 2008.  相似文献   

11.
A system of hypersingular equations for the title problem is constructed. Qualitative properties of the solution of this system are discussed. Lavrent’ev Institute of Hydrodynamics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 40, No. 4, pp. 195–197, July–August, 1999.  相似文献   

12.
13.
A flat, compressed elastic film on a viscous layer is unstable. The film can form wrinkles to reduce the elastic energy. In this paper, we are interested in the two-dimensional models for thin films bonded to a viscous layer and in particular we focus on generic instabilities evidenced in this context by Suo and coworkers [Huang, Z., Hong, W., Suo, Z., 2005. Non linear analyses of wrinkles in a film bonded to a compliant substrate. J. Mech. Phys. Solids 53, 2101–2118; Lo, Y.H., 1991. New approach to grow pseudomorphic structures over the critical thickness. Appl. Phys. Lett. 59, 2311–2320]. We present a rigorous linear perturbation analysis for anisotropic materials, that allows the prediction of both the orientation of the corrugations of the thin film, and the wavelength that maximize the growth velocity. Finally, we compare our theoretical estimates to experimental results for a In0.65Ga0.35As alloy constraint to InP.  相似文献   

14.
15.
A nonlinear model relating the imposed motion of a circular cylinder, submerged in a fluid flow, to the transverse force coefficient is presented. The nonlinear fluid system, featuring vortex shedding patterns, limit cycle oscillations and synchronisation, is studied both for swept sine and multisine excitation. A nonparametric nonlinear distortion analysis (FAST) is used to distinguish odd from even nonlinear behaviour. The information which is obtained from the nonlinear analysis is explicitly used in constructing a nonlinear model of the polynomial nonlinear state-space (PNLSS) type. The latter results in a reduction of the number of parameters and an increased accuracy compared to the generic modelling approach where typically no such information of the nonlinearity is used. The obtained model is able to accurately simulate time series of the transverse force coefficient over a wide range of the frequency–amplitude plane of imposed cylinder motion.  相似文献   

16.
The paper proposes an approximate solution describing a collision of an elastic finite-length cylinder with a rigid barrier when the lateral boundary conditions of the first fundamental problem of elasticity are satisfied. A finite-difference approach with respect to time and the integral transform method are used to reduce the original initial-boundary-value problem to a one-dimensional one. It is solved using the matrix Green’s function. The final expressions for displacements are obtained by solving a singular integral equation by the orthogonal-polynomial method. The values of displacements and strains are analyzed for short periods of time __________ Translated from Prikladnaya Mekhanika, Vol. 43, No. 9, pp. 74–82, September 2007.  相似文献   

17.
We revisit the approach proposed by F.L.  Chernousko to modeling the dynamics of a rigid body with a cavity entirely filled with a highly viscous fluid. Within the approach, a finite-dimensional model of the body+fluid system is offered and the influence of the fluid is represented as a special torque acting upon the body with solidified fluid. Our aim is to develop further and expand a few technical aspects of the Chernousko model. In particular, we offer a coordinate-free form for some essential formulas and consider the case of constrained dynamics. To illustrate the results obtained we explore the motion of a physical pendulum with a fluid-filled cavity on a rotating platform.  相似文献   

18.
The paper studies the interaction of a harmonically oscillating spherical body and a thin elastic cylindrical shell filled with a perfect compressible fluid and immersed in an infinite elastic medium. The geometrical center of the sphere is located on the cylinder axis. The acoustic approximation, the theory of thin elastic shells based on the Kirchhoff—Love hypotheses, and the Lamé equations are used to model the motion of the fluid, shell, and medium, respectively. The solution method is based on the possibility of representing partial solutions of the Helmholtz equations written in cylindrical coordinates in terms of partial solutions written in spherical coordinates, and vice versa. Satisfying the boundary conditions at the shell—medium and shell—fluid interfaces and at the spherical surface produces an infinite system of algebraic equations with coefficients in the form of improper integrals of cylindrical functions. This system is solved by the reduction method. The behavior of the hydroelastic system is analyzed against the frequency of forced oscillations.Translated from Prikladnaya Mekhanika, Vol. 40, No. 9, pp. 75–86, September 2004.  相似文献   

19.
The steady sliding frictional contact problem between a moving rigid indentor of arbitrary shape and an isotropic homogeneous elastic half-space in plane strain is extensively analysed. The case where the friction coefficient is a step function (with respect to the space variable), that is, where there are jumps in the friction coefficient, is considered. The problem is put under the form of a variational inequality which is proved to always have a solution which, in addition, is unique in some cases. The solutions exhibit different kinds of universal singularities that are explicitly given. In particular, it is shown that the nature of the universal stress singularity at a jump of the friction coefficient is different depending on the sign of the jump.  相似文献   

20.
The nonstationary problem on the axisymmetric antiplane deformation of a hollow cylinder due to a longitudinal impact on the end of the rigid cylindrical shell is considered. The solution of the boundary-value problem is reduced to a system of Volterra integral equations of the second kind. A numerical analysis is carried out and its results are plotted. S. P. Timoshenko Institute of Mechanics, National Academy of Sciences of Ukraine, Kiev. Translated from Prikladnaya Mekhanika, Vol. 36, No. 5, pp. 98–102, May, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号