首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism behind reverse intersystem crossing (rISC) in metal-based TADF emitters is still under debate. Thermal rISC necessitates small singlet/triplet energy gaps as realized in donor-acceptor systems with charge-transfer excited states. However, their associated spin-orbit couplings are too small to account for effective rISC. Here, we report the first nonadiabatic dynamics simulation of the rISC process in a carbene-copper(I)-carbazolyl TADF emitter. Efficient rISC on a picosecond time scale is demonstrated for an initial triplet minimum geometry that exhibits a perpendicular orientation of the ligands. The dynamics involves an intermediate higher-lying triplet state of metal-to-ligand charge transfer character (3MLCT), which enables large spin-orbit couplings with the lowest singlet charge transfer state. The mechanism is completed in the S1 state, where the complex can return to a co-planar coordination geometry that presents high fluorescence efficiency.  相似文献   

2.
Aggregation-induced emission (AIE) luminogens (AIEgens) are attractive for the construction of non-doped blue organic light-emitting diodes (OLEDs) owning to their high emission efficiency in the film state. However, the large internal inversion rate (kIC(Tn)) between high-lying triplet levels (Tn) and Tn-1 causes a huge loss of triplet excitons, resulting in dissatisfied device performance of these AIEgens-based non-doped OLEDs. Herein, we designed and synthesized a blue luminogen of DPDPB-AC by fusing an AIEgen of TPB-AC and a DMPPP, which feature hot exciton and triplet-triplet annihilation (TTA) up-conversion process, respectively. DPDPB-AC successfully inherits the AIE feature and excellent horizontal dipole orientation of TPB-AC. Furthermore, it owes smaller kIC(Tn) than TPB-AC. When DPDPB-AC was applied in OLED as non-doped emitting layer, an outstanding external quantum efficiency of 10.3 % and an exceptional brightness of 69311 cd m−2 were achieved. The transient electroluminescent measurements and steady-state dynamic analysis confirm that both TTA and hot exciton processes contribute to such excellent device performance. This work provides a new insight into the design of efficient organic fluorophores by managing high-lying triplet excitons.  相似文献   

3.
The decay processes of the lowest excited singlet and triplet states of five methylated angelicins (4,6,4′-trimethyl-angelicin, MA, and four methylated thioangelicins, MTA; see Scheme 1) were investigated in live solvents by stationary and pulsed fluorometric and flash photolytic techniques. In particular, the solvent effects on absorption, fluorescence, quantum yields of fluorescence (φF) and triplet formation (φT), lifetimes of fluorescence (τF) and the triplet state (τT) and the quantum yields of singlet oxygen production (φΔ) were investigated. Semiempirical (ZINDO/S-CI) calculations were carried out to obtain information (transition probabilities and nature) on the lowest excited singlet and triplet states. The quantum mechanical calculations and the solvent effect on the photophysical properties showed that the lowest excited singlet state (S1) is a partially allowed π,π* state, while the close-lying S2 state is n,π* in nature. The efficiencies of fluorescence, S1→T1 intersystem crossing (ISC) and S1→ S0 internal conversion (IC) strongly depend on the energy gap between S1, and S2 and are explained in terms of the so-called proximity effect. In fact, for MA in cyclohexane, only the S1→ S0 internal conversion is operative, while in acetonitrile and ethanol, where the n.π* state is shifted to higher energy, the efficiencies of fluorescence and ISC increase significantly. The energy gap between S1 and S2 increases in MTA, where the furanic oxygen is replaced by a sulfur atom. Consequently, the solvent effect on the photophysical parameters of MTA is less marked than for MA; e.g. fluorescence and triplet-triplet absorption are also detectable in the nonpolar cyclohexane. The lowest excited singlet state of molecular oxygen O2(1Dg) was produced efficiently in polar solvents by energy transfer from the T1 state of MA and MTA.  相似文献   

4.
Photochemical activation by triplet photosensitizers is highly expedient for a green focus society. In this work, we have theoretically probed excited state characteristics of thioxanthone and its derivatives for their triplet harvesting efficiency using density functional theory (DFT) and time-dependent density functional theory (TDDFT). Absorption and triplet energies corroborate well with the available experimental data. Our results predict that both the S1 and T1 states are π-π* in nature, which renders a high oscillator strength for S0 to S1 transition. Major triplet exciton conversion occurs through intersystem crossing (ISC) channel between the S1 (1π-π*) and high energy 3n- π* state. Apart from that, there is both radiative and non-radiative channel from S1 to S0, which competes with the ISC channel and reduces the triplet harvesting efficiency. For thioxanthones with −OMe (Me=Methyl) or −F substitution at 2 or 2’ positions, the ISC channel is not energetically feasible, causing sluggish intersystem crossing quantum yield (ΦISC). For unsubstituted thioxanthone and for isopropyl substitution at 2’ position, the S1-T1 gap is slightly positive ( ), rendering a lower triplet harvesting efficiency. For systems with −OMe or −F substitution at 3 or 3’ position of thioxanthone, because of buried π state and high energy π* state, the S1-3nπ* gap becomes negative. This leads to a high ΦISC (>0.9), which is key to being an effective photocatalyst.  相似文献   

5.
Three new anthracene derivatives [2‐chloro‐9,10‐dip‐tolylanthracene (DTACl), 9,10‐dip‐tolylanthracene‐2‐carbonitrile (DTACN), and 9,10‐di(naphthalen‐1‐yl)anthracene‐2‐carbonitrile (DNACN)] were synthesized as triplet acceptors for low‐power upconversion. Their linear absorption, single‐photon‐excited fluorescence, and upconversion fluorescence properties were studied. The acceptors exhibit high fluorescence yields in DMF. Selective excitation of the sensitizer PdIIoctaethylporphyrin (PdOEP) in solution containing DTACl, DTACN, or DNA‐CN at 532 nm with an ultralow excitation power density of 0.5 W cm?2 results in anti‐Stokes blue emission. The maximum upconversion quantum yield (ΦUC=17.4 %) was obtained for the couple PdOEP/DTACl. In addition, the efficiency of the triplet–triplet energy transfer process was quantitatively studied by quenching experiments. Experimental results revealed that a highly effective acceptor for upconversion should combine high fluorescence quantum yields with efficient quenching of the sensitizer triplet.  相似文献   

6.
Two kinds of polystyrene-based through-space charge transfer (TSCT) polymers consisting of spatially-separated acridan donor moieties bearing phenyl or naphthyl substituents and triazine acceptor moieties are designed and synthesized. It is found that TSCT polymers containing phenyl-substituted acridan donors exhibit high-lying singlet (S1) and triplet (T1) states with small singlet-triplet energy splitting (∆EST) of 0.040.05 eV, resulting in thermally activated delayed fluorescence (TADF) with reverse intersystem crossing rate constants of 1.11.2 × 106 s−1. In contrast, polymers bearing naphthyl-substituted acridan donors, although still having TSCT emission, exhibit no TADF effect because of the large ∆EST of 0.300.33 eV induced by low-lying locally excited T1 state of naphthyl donor moiety. Solution-processed organic light-emitting diodes using TSCT polymers containing phenyl-substituted acridan donors reveal sky-blue emission at 483 nm together with maximum external quantum efficiency (EQE) of 11.3%, which is about 30 times that of naphthyl-substituted counterpart with maximum EQE of 0.38%, shedding light on the importance of high triplet energy level of donor moiety on realizing TADF effect and high device efficiency for through-space charge transfer polymer.  相似文献   

7.
The photophysical properties of bonellin, a free-base chlorin, were studied in ethanolic solution. For the singlet excited state the following data were determined: an energy level, EBS= 187 ± 2kJ mol-1, a lifetime, τf= 6.3± 0.1ns at 298 K, and fluorescence quantum yields, φr= 0.07 ± 0.02 (298 K) and 0.20 ± 0.04 (77 K). The S1→ T intersystem crossing quantum yield was φisc= 0.85 ± 0.1. No phosphorescence was observed at 298 K and 77 K. Based on quenching experiments the triplet state energy level was determined to be EBT= 180 ± 20 kJ mol-1. A unimolecular decay rate constant, k1= (2.3 ± 0.5)· 103 s-1 at room temperature, and a molar absorption coefficient, εT443= 9500 ± 500 M-1 cm-1, were obtained for the triplet state. This species was quenched by O2 with ko2= (1.7 ±0.3)· 108M-1 s-1, and by benzoquinone with kq= (5.2 ± 0.3)-109M-1 s-1. The latter value, as well as the high value determined for the triplet annihilation rate constant, k2= (2 ± 0.5)· 109M-1 s-1, might reflect an electron transfer mechanism. Copper bonellin had a shorter triplet lifetime (>20 ns), which offers a possible explanation for its lack of photodynamic action.  相似文献   

8.
《中国化学》2017,35(10):1559-1568
The donor‐π‐conjugated‐acceptor (D‐π‐A) structure is an important design for the luminescent materials because of its diversity in the selections of donor, π‐bridge and acceptor groups. Herein, we demonstrate two examples of D‐π‐A structures capable to finely modulate the excited state properties and arrangement of energy levels, TPA‐AN‐BP and CZP‐AN‐BP , which possess the same acceptor and π‐bridge but different donor. The investigation of their photophysical properties and DFT calculation revealed that the D‐π‐A structure with proper donor, π‐bridge and acceptor can result in separation of frontier molecular orbitals on the corresponding donor and acceptor with an obvious overlap on the π‐bridge, resulting in a hybridized local and charge‐transfer (HLCT ) excited state with high photoluminescent (PL ) efficiencies. Meanwhile, their singlet and triplet states are arranged on corresponding moieties with large energy gap between T2 and T1 , and a small energy gap between S1 and T2 , which favor the reverse intersystem crossing (RISC ) from high‐lying triplet levels to singlet levels. As a result, the sky‐blue emission non‐doped OLED based on the TPA‐AN‐BP reached maximum external quantum efficiency (EQE ) of 4.39% and a high exciton utilization efficiency (EUE ) of 77%. This study demonstrates a new strategy to construct highly efficient OLED materials.  相似文献   

9.
New platinum(II) complex with picolinate (pic) and 2-phenyl naphtothiazole (pntl) ligand as the guest material has been designed and its capability for OLED applications have been examined. Also, we have studied the effects of different substitutions (ie, electron-withdrawing and electron donating groups) on naphtothiazole moiety on optovoltaic characters. We have employed density functional theoretical (B3LYP/DFT) methods to reveal the photophysical and structure properties relationships with the typical host material. The valence MO energies, vertical and adiabatic triplet energy, reorganization energy, and triplet exciton generation fraction (χ T) have been extensively studied to exploring high phosphorescence efficiency in OLEDs. It has been predicted that substituted systems are good candidates for OLED applications as well as their parent system.  相似文献   

10.
Multiresonant thermally activated delayed fluorescence (MR-TADF) compounds are attractive as emitters for organic light-emitting diodes (OLEDs) as they can simultaneously harvest both singlet and triplet excitons to produce light in the device and show very narrow emission spectra, which translates to excellent color purity. Here, we report the first example of an MR-TADF emitter (DOBDiKTa) that fuses together fragments from the two major classes of MR-TADF compounds, those containing boron (DOBNA) and those containing carbonyl groups (DiKTa) as acceptor fragments in the MR-TADF skeleton. The resulting molecular design, this compound shows desirable narrowband pure blue emission and efficient TADF character. The co-host OLED with DOBDiKTa as the emitter showed a maximum external quantum efficiency (EQEmax) of 17.4 %, an efficiency roll-off of 32 % at 100 cd m−2, and Commission Internationale de l’Éclairage (CIE) coordinates of (0.14, 0.12). Compared to DOBNA and DiKTa, DOBDiKTa shows higher device efficiency with reduced efficiency roll-off while maintaining a high color purity, which demonstrates the promise of the proposed molecular design.  相似文献   

11.
Establishment of the structure–property relationships of thermally activated delayed fluorescence (TADF) materials has become a significant quest for the scientific community. Herein, two new donors, 10H‐benzofuro[3,2‐b]indole (BFI) and 10H‐benzo[4,5]thieno[3,2‐b]indole (BTI), have been developed and integrated with a aryltriazine acceptor to design the green TADF emitters benzofuro[3,2‐b]indol‐10‐yl)‐5‐(4,6‐diphenyl‐1,3,5‐triazin‐2‐yl)benzonitrile ( BFICNTrz ) and 2‐(10H‐benzo[4,5]thieno[3,2‐b]indol‐10‐yl)‐5‐(4,6‐diphenyl‐1,3,5‐triazin‐2‐yl)benzonitrile ( BTICNTrz ), respectively. The physicochemical and electroluminescence properties of the compounds were tuned by exchanging the heteroatom in the donor scaffold. Intriguingly, the electronegativity of the heteroatom and the ionization potential of the donor unit played vital roles in control of the singlet–triplet energy splitting and TADF mechanism of the compounds. Both compounds showed similar singlet excited states that originated from the charge transfer (CT) states (1CT), whereas the triplet excited states were tuned by the heteroatom in the donor unit. The origin of phosphorescence in the BTICNTrz emitter was CT emission from the triplet state (3CT), whereas that in the BFICNTrz emitter stemmed from the local triplet excited state (3LE). Consequently, BTICNTrz showed a small singlet–triplet energy splitting of 0.08 eV, compared with 0.26 eV for BFICNTrz . Thus, BTICNTrz showed efficient delayed fluorescence with a high quantum yield and a short delayed exciton lifetime, whereas BFICNTrz displayed weak delayed fluorescence with a relatively long lifetime. Furthermore, a BTICNTrz ‐based device exhibited a maximum external quantum efficiency (EQE) of 15.2 % and reduced efficiency roll‐off (12 %) compared with its BFICNTrz ‐based counterpart, which showed a maximum EQE of 6.4 % and severe efficiency roll‐off (55 %) at a practical brightness range of 1000 cd m?2. These results demonstrate that the choice of subunit plays a vital role in the design of efficient TADF emitters.  相似文献   

12.
A dinuclear Pt(II) compound was reported to exhibit thermally activated delayed fluorescence (TADF); however, the luminescence mechanism remains elusive. To reveal relevant excited-state properties and luminescence mechanism of this Pt(II) compound, both density function theory (DFT) and time-dependent DFT (TD-DFT) calculations were carried out in this work. In terms of the results, the S1 and T2 states show mixed intraligand charge transfer (ILCT)/metal-to-ligand CT (MLCT) characters while the T1 state exhibits mixed ILCT/ligand-to-metal CT (LMCT) characters. Mechanistically, a four-state (S0, S1, T1, and T2) model is proposed to rationalize the TADF behavior. The reverse intersystem crossing (rISC) process from the initial T1 to final S1 states involves two up-conversion channels (direct T1→S1 and T2-mediated T1→T2→S1 pathways) and both play crucial roles in TADF. At 300 K, these two channels are much faster than the T1 phosphorescence emission enabling TADF. However, at 80 K, these rISC rates are reduced by several orders of magnitude and become very small, which blocks the TADF emission; instead, only the phosphorescence is observed. These findings rationalize the experimental observation and could provide useful guidance to rational design of organometallic materials with superior TADF performances.  相似文献   

13.
A family of organic emitters with a donor–σ–acceptor (D‐σ‐A) motif is presented. Owing to the weakly coupled D‐σ‐A intramolecular charge‐transfer state, a transition from the localized excited triplet state (3LE) and charge‐transfer triplet state (3CT) to the charge‐transfer singlet state (1CT) occurred with a small activation energy and high photoluminescence quantum efficiency. Two thermally activated delayed fluorescence (TADF) components were identified, one of which has a very short lifetime of 200–400 ns and the other a longer TADF lifetime of the order of microseconds. In particular, the two D‐σ‐A materials presented strong blue emission with TADF properties in toluene. These results will shed light on the molecular design of new TADF emitters with short delayed lifetimes.  相似文献   

14.
The S1 electronic state of 7,7,8,8-Tetracyanoquinodimethane (TCNQ) has been investigated by laser induced fluorescence (LIF), dispersed fluorescence (DF) spectroscopy, and lifetime measurements under jet-cooled conditions in the gas-phase. The LIF spectrum showed a weak origin band at 412.13 nm (24262 cm−1) with prominent progression and combination bands involving vibrations of 327, 1098, and 2430 cm−1. In addition, very strong bands appeared at ∼363.6 nm (3300 cm−1 above the origin). Both the LIF and DF spectra indicate considerable geometric change in the S1 state. The fluorescence lifetime of S1 at zero-point level was obtained to be 220 ns. This lifetime is 40 times longer than the radiative lifetime estimated from the S1−S0 oscillator strength. Furthermore, the lifetimes of the vibronic bands exhibited drastic energy dependence, indicating a strong mixing with the triplet (T1) or intramolecular charge-transfer (CT) state. This study is thought to disclose intrinsic nature of TCNQ, which has been well known as a component of organic semiconductors and a versatile p-type dopant.  相似文献   

15.
The photophysical properties of benzoporphyrin derivative monoacid ring A (BPD-MA), a second-generation photosensitizer currently in phase II clinical trials, were investigated in homogeneous solution. Absorption, fluorescence, triplet-state, singlet oxygen (O2(1Δg)) sensitization studies and photobleaching experiments are reported. The ground state of this chlorin-type molecule shows a strong absorbance in the red (λ≈ 688 nm, ?≈ 33 000 M?1 cm?1 in organic solvents). For the singlet excited state the following data were determined in methanol: energy level, Es= 42.1 kcal mol?1, lifetime, Φf= 5.2 ns and fluorescence quantum yield, Φf= 0.05 in air-saturated solution. The triplet state of BPD-MA has a lifetime, τf >. 25 ns, an energy level, ET= 26.9 kcal mol?1 and the molar absorption coefficient is ?T= 26 650 M?1 cm?1 at 720 nm. A dramatic effect of oxygen on the fluorescence (φf) and intersystem crossing (φT) quantum yields has been observed. The BPD-MA presents rather high triplet (φT= 0.68 under N2-saturated conditions) and singlet oxygen (φΔ= 0.78) quantum yields. On the other hand, the presence of oxygen does not significantly modify the photobleaching of this photostable compound, the photodegradation quantum yield (φPb) of which was found to be on the order of 5 × 10?5 in organic solvents.  相似文献   

16.
We present an overview over eight brightly luminescent Cu(I) dimers of the type Cu2X2(P∩N)3 with X = Cl, Br, I and P∩N = 2-diphenylphosphino-pyridine (Ph2Ppy), 2-diphenylphosphino-pyrimidine (Ph2Ppym), 1-diphenylphosphino-isoquinoline (Ph2Piqn) including three new crystal structures (Cu2Br2(Ph2Ppy)3 1-Br, Cu2I2(Ph2Ppym)3 2-I and Cu2I2(Ph2Piqn)3 3-I). However, we mainly focus on their photo-luminescence properties. All compounds exhibit combined thermally activated delayed fluorescence (TADF) and phosphorescence at ambient temperature. Emission color, decay time and quantum yield vary over large ranges. For deeper characterization, we select Cu2I2(Ph2Ppy)3, 1-I, showing a quantum yield of 81%. DFT and SOC-TDDFT calculations provide insight into the electronic structures of the singlet S1 and triplet T1 states. Both stem from metal+iodide-to-ligand charge transfer transitions. Evaluation of the emission decay dynamics, measured from 1.2 ≤ T ≤ 300 K, gives ∆E(S1-T1) = 380 cm−1 (47 meV), a transition rate of k(S1→S0) = 2.25 × 106 s−1 (445 ns), T1 zero-field splittings, transition rates from the triplet substates and spin-lattice relaxation times. We also discuss the interplay of S1-TADF and T1-phosphorescence. The combined emission paths shorten the overall decay time. For OLED applications, utilization of both singlet and triplet harvesting can be highly favorable for improvement of the device performance.  相似文献   

17.
Two-coordinate Cu (I) complexes have attracted great interest recently because of the rich photophysical property in solid state, including the aggregation-induced thermal activated delayed fluorescence. Here, we summarize our theoretical investigations on the excited state structure and decay dynamics for the two-coordinate Cu (I) complexes in solution phase and solid state by the thermal vibration correlation function rate formalism we developed earlier coupled with time-dependent density-functional theory within polarizable continuum model and hybrid quantum and molecular mechanics. First, for the CAAC Cu (I) Cl complex, we found that the nature of the excited state undergoes a change from metal-to-ligand charge transfer (MLCT) in solution to hybrid halogen-to-ligand charge transfer and MLCT in solid state. The bending vibrations of the C Cu Cl and Cu C N bonds are restricted in aggregates, reducing the non-radiative decay rate to cause strong solid-state fluorescence. Second, for CAAC Cu (I) Cz, we found that both intersystem crossing (ISC) and reverse intersystem crossing (rISC) are enhanced by 2–4 orders of magnitudes upon aggregation, leading to highly efficient thermally activated delayed fluorescence (TADF). The enhanced ISC and rISC rates can be attributed to the increase of the metal proportion in the frontier molecular orbitals, leading to an enhanced spin−orbit coupling between S1 and T1. The reaction barriers for ISC and rISC are much lower in solution than that in aggregate phase resulting in a decrease in energy gap E ST and an increase in the relative reorganization energy through bending the angle ∠C − Cu − N for T1. Our theoretical studies provide a clear rationalization for the highly efficient solid-state luminescence character of two-coordinate Cu (I) complexes and may clarify the ongoing dispute on the understanding of the high TADF quantum efficiency.  相似文献   

18.
Two-coordinate Carbene−Metal−Amide (CMA) complexes with thermally activated delayed fluorescence (TADF) have attracted much attention owing to their excellent luminescence properties and potential applications in organic light-emitting devices. However, the luminescence mechanism remains unclear. Herein, we took one CMA Au(I) complex as an example and investigate its relevant photophysics using both density functional theory (DFT) and time-dependent DFT methods with a polarizable continuum model. The calculated absorption and emission spectra agree with the experimental data and the S1 and T1 states show mixed ligand to ligand charge transfer (CT) and ligand to metal CT characters. Small spatial overlap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) minimizes the energy difference between the S1 and T1 states (ΔEST). Properly large spin-orbit coupling promotes the reverse intersystem crossing (rISC) process. At 300 K, the rISC process is much more efficient than the T1 phosphorescent emission, which leads to the TADF emission.  相似文献   

19.
The use of a chiral, emitting skeleton for axially chiral enantiomers showing activity in thermally activated delayed fluorescence (TADF) with circularly polarized electroluminescence (CPEL) is proposed. A pair of chiral stable enantiomers, (−)-(S)-Cz-Ax-CN and (+)-(R)-Cz-Ax-CN, was designed and synthesized. The enantiomers, both exhibiting intramolecular π-conjugated charge transfer (CT) and spatial CT, show TADF activities with a small singlet–triplet energy difference (ΔEST) of 0.029 eV and mirror-image circularly polarized luminescence (CPL) activities with large glum values. Notably, CP-OLEDs based on the enantiomers feature blue electroluminescence centered at 468 nm with external quantum efficiencies (EQEs) of 12.5 and 12.7 %, and also show intense CPEL with gEL values of −1.2×10−2 and +1.4×10−2, respectively. These are the first CP-OLEDs based on TADF-active enantiomers with efficient blue CPEL.  相似文献   

20.
We prepared a N^N Pt(II) bisacetylide complex that has strong absorption of visible light (molar absorption coefficients ϵ=6.7×104 M−1 cm−1 at 570 nm), and the singlet oxygen quantum yield (ΦΔ) is up to 78 %. Femtosecond transient absorption spectra show the intersystem crossing (ISC) of the complex takes 81.8 ps, nanosecond transient absorption spectra show the triplet excited state lifetime is 7.6 μs. Density functional theory (DFT) computation demonstrated that the S1 and T1 states are mainly localized on the perylenemonoimide (PMI) ligands, although the involvement of the Pt(II) centre is noticeable. The complex was used as triplet photosensitizer to generate delayed fluorescence with perylenebisimide (PBI) as the triplet state energy acceptor and emitter, via the intermolecular triplet-triplet energy transfer (TTET) and triplet-triplet annihilation (TTA), the delayed fluorescence lifetime is up to 52.5 μs under the experimental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号