首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The harmonic balance (HB) method is utilized to obtain the periodic solutions for the two-dimensional airfoil with cubic nonlinearity in pitch undergoing subsonic flow. In the course of formulating the HB algebraic system, the manipulation software Mathematica is employed to deal with the complex Fourier coefficients involved with the nonlinear term. In general, to solve the HB algebraic system, either a symbolic calculation or a numerical approximation of the Jacobian matrix is required in each iteration, which is computationally expensive. To remedy this drawback, the Jacobian matrix is explicitly derived in this paper. The effects of exploiting the explicit Jacobian matrix on the accuracy and efficiency of the HB method are investigated, through comparing with the case using a numerical Jacobian matrix calculated by a three-point difference technique. Moreover, the spectral analysis is applied to the periodic motions by the numerical method to provide insight into the distribution of the dominant frequencies, so as to provide a reasonable suggestion for the truncation of the Fourier series expansion in the HB method. In addition, a frequency modulation phenomenon is identified in the pitch motions via spectral analysis, whose effect on the accuracy of the HB method is examined both numerically and analytically. Finally, illustrative examples validate that the HB method with as many harmonics as the spectral analysis suggests can yield sufficiently accurate solutions.  相似文献   

2.
A method is proposed to calculate the periodic solutions of piecewise nonlinear systems. The method is based on analytical derivation of nonlinear multi-harmonic equations of motion. Since periodic variations of nonlinear forces are characterized by different states, the vibration cycle is broken into sequential transition intervals according to the instant sets of state transitions. Analytical formulations of the harmonic coefficients of the nonlinear forces and its derivatives with respect to the harmonic coefficients of displacements are developed. Sensitivities of the harmonic coefficients of periodic solutions are determined for constructing explicit expressions for vibration amplitude levels as a function of structural parameters. Numerical investigations of the limit cycle oscillations and its sensitivities of an airfoil with different piecewise nonlinearities have been performed. The results show that the developed method is capable of determining the periodic solutions and its sensitivities with respect to the structural parameters. In order to guarantee time continuity of the nonlinear force, for the hysteresis model it is not right to track the periodic solutions by using the preload or freeplay as the continuation parameters.  相似文献   

3.
The solution of a system of two coupled, nonhomogeneous undamped, ordinary differential equations with cubic nonlinearity and sinusoidal driving force is obtained by the use of Jacobian elliptic functions and the elliptic balance method. To assess the accuracy of our proposed solution, we consider an example that arises in the study of the finite amplitude, nonlinear vibration of a simple shear suspension system. It is shown that the analytical results exhibit good agreement with the numerical integration solutions even for moderate values of the system parameters.  相似文献   

4.
This paper considers finite friction contact problems involving an elastic pin and an infinite elastic plate with a circular hole. Using a suitable class of Green's functions, the singular integral equations governing a very general class of conforming contact problems are formulated. In particular, remote plate stresses, pin loads, moments and distributed loading of the pin by conservative body forces are considered. Numerical solutions are presented for different partial slip load cases. In monotonic loading, the dependence of the tractions on the coefficient of friction is strongest when the contact is highly conforming. For less conforming contacts, the tractions are insensitive to an increase in the value of the friction coefficient above a certain threshold. The contact size and peak pressure in monotonic loading are only weakly dependent on the pin load distribution, with center loads leading to slightly higher peak pressure and lower peak shear than distributed loads. In contrast to half-plane cylinder fretting contacts, fretting behavior is quite different depending on whether or not the pin is allowed to rotate freely. If pin rotation is disallowed, the fretting tractions resemble half-plane fretting tractions in the weakly conforming regime but the contact resists sliding in the strongly conforming regime. If pin rotation is allowed, the shear traction behavior resembles planar rolling contacts in that one slip zone is dominant and the peak shear occurs at its edge. In this case, the effects of material dissimilarity in the strongly conforming regime are only secondary and the contact never goes into sliding. Fretting tractions in the forward and reversed load states show shape asymmetry, which persists with continued load cycling. Finally, the governing integro-differential equation for full sliding is derived; in the limiting case of no friction, the same equation governs contacts with center loading and uniform body force loading, resulting in identical pressures when their resultants are equal.  相似文献   

5.
6.
In order to obtain the inter-yarn friction coefficient in aramid fibers, a new methodology is developed. Experimental yarn pull-out test and 3D numerical model have perfomed in Kevlar®129 (K129) aramid. An optimization of classic numerical models in order to simulate pull-out tests and obtain the inter-yarn friction is carried out. Numerical simulation results were compared to experimental yarn pull-out curves and based on linear dependence of the pull-out load with the friction coefficient, the inter-yarn friction coefficient of K129 aramid has been obtained.  相似文献   

7.
Periodic response of nonlinear oscillators is usually determined by approximate methods. In the "steady state" type methods, first an approximate solution for the steady state periodic response is determined, and then the local stability of this solution is determined by analyzing the equation of motion linearized about this predicted "solution". An exact stability analysis of this linear variational equation can provide erroneous stability type information about the approximate solutions. It is shown that a consistent stability type information about these solutions can be obtained only when the linearized variational equation is analyzed by approximate methods, and the level of accuracy of this analysis is consistent with that of the approximate solutions. It is demonstrated that these consistent stability results do not imply that the approximate solution is qualitatively correct. It is also shown that the difference between an approximate and the next higher order stability analysis can be used to "guess" the role of higher harmonics in the periodic response. This trial and error procedure can be used to ensure the qualitatively correct and numerically accurate nature of the approximate solutions and the corresponding stability analysis.  相似文献   

8.
膜结构工程的实践和形状确定理论要求对膜结构进行找力分析。本文结合无矩理论推导了膜结构自平衡预应力确定的解析方程,研究表明膜结构自平衡预应力由膜曲面的特性和边界条件决定。根据相似原理提出了索膜结构找力分析的数值方法——复位平衡法,并且依据曲面上单元之间的关联对这种方法进行了优化。与无矩理论的计算结果比较显示优化的复位平衡法有很高的计算精度,能够应用到实际工程的精确分析中。  相似文献   

9.
A moving finite element algorithm has been compared against the upwind-differencing and Smolarkiewicz methods for the population balance equation of multicomponent particle growth processes. Analytical solutions and an error function have been used to test the numerical methods. The moving finite elements technique is much more accurate than other methods for a wide range of parameters. Since this method uses moving grids, it is able to model very narrow particle size distributions. It is also shown that the method can be extended to solve condensational growth problems which include particle curvature and non-continuum mass transfer effects.  相似文献   

10.
研究了高效耗能摩擦阻尼器的减震机理。利用力学原理,分析了地震作用下高效耗能摩擦阻尼器的摩擦阻尼力放大系数变化规律,推导了设置高效耗能摩擦阻尼器结构的等效阻尼比计算公式。在此基础上,对分别设置传统摩擦阻尼器和高效耗能摩擦阻尼器的框架结构进行了地震反应分析,结果表明,高效耗能摩擦阻尼器通过将较小的摩擦阻尼力放大可以显著降低结构地震反应,减震效果良好;利用本文给出的等效阻尼比分析得出结构顶层位移反应幅值,与阻尼等效前相应值误差不超过10%。  相似文献   

11.
一种空间缆索结构静力分析的解析元法   总被引:1,自引:0,他引:1  
将空间缆索结构简化为具有拉伸刚度的质点系,给出了缆索结构空间解析元法的基本方程和求解方法,单元间的作用力与坐标变化的关系可以用解析法得到,对所得到的反映结构特性的质点系方程组进行力的平衡迭代,求解方程组.采用自动的动态可变步长的迭代方法,能够提高计算效率,保证收敛.这种方法既考虑了几何非线性,又适用于材料非线性的计算,比有限元法优越之处还在于,它不用求解线性方程组,所以适用范围广,允许求解多自由度的几何可变体系,而有限元法在求解此类问题时经常不收敛.  相似文献   

12.
A high friction coefficient is first observed as a sliding between bodies commences, which is called the static friction. Then, the friction coefficient decreases approaching the lowest stationary value, which is called the kinetic friction. Thereafter, if the sliding stops for a while and then it starts again, the friction coefficient recovers and a similar behavior as that in the first sliding is reproduced. In this article the subloading-friction model with a smooth elastic–plastic sliding transition [Hashiguchi, K., Ozaki, S., Okayasu, T., 2005. Unconventional friction theory based on the subloading surface concept. Int. J. Solids Struct. 42, 1705–1727] is extended so as to describe the reduction from the static to kinetic friction and the recovery of the static friction. The reduction is formulated as the plastic softening due to the separations of the adhesions of surface asperities induced by the sliding and the recovery is formulated as the viscoplastic (creep) hardening due to the reconstructions of the adhesions of surface asperities during the elapse of time under a quite high actual contact pressure between edges of asperities.  相似文献   

13.
We have deduced incremental harmonic balance an iteration scheme in the (IHB) method using the harmonic balance plus the Newton-Raphson method. Since the convergence of the iteration is dependent upon the initial values in the iteration, the convergent region is greatly restricted for some cases. In this contribution, in order to enlarge the convergent region of the IHB method, we constructed the zeroth-order deformation equation using the homotopy analysis method, in which the IHB method is employed to solve the deformation equation with an embedding parameter as the active increment. Taking the Duffing and the van der Pol equations as examples, we obtained the highly accurate solutions. Importantly, the presented approach renders a convenient way to control and adjust the convergence.  相似文献   

14.
无单元法在有自由面渗流计算中的应用   总被引:13,自引:0,他引:13  
针对有自由面渗流分析中的有限元固定网各法存在的不足,利用无单元法中积分网格和结点相互独立的优点,提出了有自由面渗流的无单元法。计算结果表明,无单元法可以方便地解决迭代计算中的自由面变化问题,实现了真正意义上的网格固定。  相似文献   

15.
The aim of this paper is to show how Jacobi elliptic functions in combination with the averaging and the harmonic balance methods can be applied to obtain the approximate solution of two coupled, ordinary differential equations having a spring with cubic nonlinearity and subjected to driving forces of elliptic type. By an appropriate choice of the system parameter values, it is possible to show that our derived solution represents the exact steady-state solution of the undamped Duffing equation with driving force of elliptic type. At the end of this work, we also demonstrate the validity of our derived solution by comparing the amplitude–time response curves with those of the numerical integration solutions.  相似文献   

16.
To solve two-dimensional boundary-value problems of elasticity, two iteration algorithms of the domain decomposition method are proposed: parallel Neumann–Neumann and sequential Dirichlet–Neumann. They are based on the hybrid boundary–finite-element approximations. The algorithms are proved to converge. The optimal parameters are selected using the minimum-residual and steepest-descent methods. Some plane problems of elasticity are solved as examples, and stationary and nonstationary iteration algorithms in these examples are analyzed for efficiency Translated from Prikladnaya Mekhanika, Vol. 44, No. 11, pp. 18–29, November 2008.  相似文献   

17.
A fundamental issue in turbomachinery design is the dynamical stress assessment of turbine blades. In order to reduce stress peaks in the turbine blades at engine orders corresponding to blade natural frequencies, friction dampers are employed. Blade response calculation requires the solution of a set of non-linear equations originated by the introduction of friction damping.

Such a set of non-linear equations is solved using the iterative numerical Newton–Raphson method. However, calculation of the Jacobian matrix of the system using classical numerical finite difference schemes makes frequency domain solver prohibitively expensive for structures with many contact points. Large computation time results from the evaluation of partial derivatives of the non-linear equations with respect to the displacements.

In this work a methodology to compute efficiently the Jacobian matrix of a dynamic system having wedge dampers is presented. It is exact and completely analytical.

The proposed methods have been successfully applied to a real intermediate pressure turbine (IPT) blade under cyclic symmetry boundary conditions with underplatform wedge dampers. Its implementation showed to be very effective, and allowed to achieve relevant time savings without loss of precision.  相似文献   


18.
Based on the classical harmonic balance method a new technique is presented to determine higher approximate periodic solutions of the non-linear differential equations. The new method is systematic and simple. The solution covers the general initial value problem (i.e., for while the existing solution is determined for a particular case, especially for . The solution is easily transformed to perturbation solution. The method is used in various non-linear problems possessing second and more than second derivatives.  相似文献   

19.
A population balance system that models the synthesis of urea is studied in this paper. The equations for the flow field, the mass and the energy balances are given in a three‐dimensional domain, while the equation for the particle size distribution is given in a four‐dimensional domain. This problem is convection‐dominated and aggregation‐driven. Both features require the application of appropriate numerical methods. This paper presents a numerical approach for simulating the population balance system, which is based on finite element schemes, a finite difference method and a modern method to evaluate convolutIon integrals that appear in the aggregation term. Two experiments are considered and the numerical results are compared with experimental data. Unknown parameters in the aggregation kernel have to be calibrated. For appropriately chosen parameters, good agreements are achieved of the experimental data and the numerical results computed with the proposed method. A detailed study of the computational results reveals the influence of different parts of the aggregation kernel. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
A practical method of calculation for the optimal lectotype of complex structures is presented in this paper. On the basis of the initial structural style and designing experience, a calculating model for the optimal lectotype is established. After approximate processing of the objective functions and constraint conditions, the lectotype problem is transformed into one for solving canonical quadratic programming based on the Kuhu-Tucker condition and Lagrange multiplier. Thus the calculating process will become simpler, more reliable and accurate by introducing the weighted factor and utilizing an improved variable metric method [1].I hereby express my thanks to ray students Shuang-Bei Li, Yi-Min Song and others for their valuable help in making the calculation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号