首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider a 3D dilute Bose-Einstein condensate at thermal equilibrium in a rotating harmonic trap. The condensate wavefunction is a local minimum of the Gross-Pitaevskii energy functional and we determine it numerically with the very efficient conjugate gradient method. For single vortex configurations in a cigar-shaped harmonic trap we find that the vortex line is bent, in agreement with the numerical prediction of Garcia-Ripoll and Perez-Garcia [Phys. Rev. A 63, 041603 (2001)]. We derive a simple energy functional for the vortex line in a cigar-shaped condensate which allows to understand physically why the vortex line bends and to predict analytically the minimal rotation frequency required to stabilize the bent vortex line. This analytical prediction is in excellent agreement with the numerical results. It also allows to find in a simple way a saddle point of the energy, where the vortex line is in a stationary configuration in the rotating frame but not a local minimum of energy. Finally we investigate numerically the effect of thermal fluctuations on the vortex line for a condensate with a straight vortex: we can predict what happens in a single realization of the experiment by a Monte Carlo sampling of an atomic field quasi-distribution function of the density operator of the gas at thermal equilibrium in the Bogoliubov approximation. Received 28 March 2002 / Received in final form 13 September 2002 Published online 21 January 2003 RID="a" ID="a"e-mail: yvan.castin@lkb.ens.fr  相似文献   

2.
We study a Bose-Einstein condensate trapped in an asymmetric double well potential. Solutions of the time-independent Gross-Pitaevskii equation reveal intrinsic loops in the energy (or chemical potential) level behavior when the shape of the potential is varied. We investigate the corresponding behavior of the quantum (many-body) energy levels. Applying the two-mode approximation to the bosonic field operators, we show that the quantum energy levels create an anti-crossing net inside the region bounded by the loop of the mean field solution. Received 6 March 2002 / Received in final form 19 September 2002 Published online 15 November 2002 RID="a" ID="a"e-mail: smerzi@cnls.lanl.gov  相似文献   

3.
We present a theoretical analysis of the evaporative cooling of an atomic beam propagating in a magnetic guide. Cooling is provided by transverse evaporation. The atomic dynamics inside the guide is analyzed by solving the Boltzmann equation with two different approaches: an approximate analytical ansatz and a Monte-Carlo simulation. Within their domain of validity, these two methods are found to be in very good agreement with each other. They allow us to determine how the phase-space density and the flux of the beam vary along its direction of propagation. We find a significant increase for the phase-space density along the guide for realistic experimental parameters. By extrapolation, we estimate the length of the beam needed to reach quantum degeneracy. Received 24 September 1999  相似文献   

4.
We study the thermodynamics of the Bose-condensed atomic hydrogen confined in the Ioffe-Pritchard potential. Such a trapping potential, that models the magnetic trap used in recent experiments with hydrogen, is anharmonic and strongly anisotropic. We calculate the ground-state properties, the condensed and non-condensed fraction and the Bose-Einstein transition temperature. The thermodynamics of the system is strongly affected by the anharmonicity of this external trap. Finally, we consider the possibility to detect Josephson-like currents by creating a double-well barrier with a laser beam. Received 15 February 2000  相似文献   

5.
We investigate the relative phase coherence properties and the occurrence of demixing instabilities for two mutually interacting and time evolving Bose-Einstein condensates in traps. Our treatment naturally includes the additional decoherence effect due to fluctuations in the total number of particles. Analytical results are presented for the breathe-together solution, an extension of previously known scaling solution to the case of a binary mixture of condensates. When the three coupling constants describing the elastic interactions among the atoms in the two states are close to each other, a dramatic increase of the phase coherence time is predicted. Numerical results are presented for the parameters of the recent JILA experiments. Received 23 April 1999 and Received in final form 21 September 1999  相似文献   

6.
An extended Bose-Einstein condensate (BEC) in an optical lattice provides a kind of periodic dielectric and causes band gaps to occur in the spectrum of light propagating through it. We examine the question whether these band gaps can modify the spontaneous emission rate of atoms excited from the BEC, and whether they can lead to a self-stabilization of the BEC against spontaneous emission. We find that self-stabilization is not possible for BECs with a density in the order of 1014 cm-3. However, the corresponding non-Markovian behavior produces significant effects in the decay of excited atoms even for a homogeneous BEC interacting with a weak laser beam. These effects are caused by the occurrence of an avoided crossing in the photon (or rather polariton) spectrum. We also predict a new channel for spontaneous decay which arises from an interference between periodically excited atoms and periodic photon modes. This new channel should also occur in ordinary periodic dielectrics. Received 27 March 2000  相似文献   

7.
We propose a new method to cool gaseous samples of neutral atoms. The gas is confined in a non dissipative optical trap in the presence of an homogeneous magnetic field. The method accumulates atoms in the m F =0 Zeeman sub-level. Cooling occurs via collisions that produce atoms in states. Thanks to the second order Zeeman effect kinetic energy is transformed into internal energy and recycling of atoms is ensured by optical pumping. This method may allow quantum degeneracy to be reached by purely optical means. Received 10 May 2000  相似文献   

8.
We develop an extension of the well-known BCS-theory to systems with trapped fermionic atoms. The theory fully includes the quantized energy levels in the trap. The key ingredient is to model the attractive interaction between two atoms by a pseudo-potential which leads to a well defined scattering problem and consequently to a BCS-theory free of divergences. We present numerical results for the BCS critical temperature and the temperature dependence of the gap. They are used as a test of existing semi-classical approximations. Received 18 December 1998  相似文献   

9.
An instanton method is proposed to investigate the quantum tunneling between two weakly-linked Bose-Einstein condensates confined in double-well potential traps. We point out some intrinsic pathologies in the earlier treatments of other authors and make an effort to go beyond these very simple zero order models. The tunneling amplitude may be calculated in the Thomas-Fermi approximation and beyond it; we find it depends on the number of the trapped atoms, through the chemical potential. Some suggestions are given for the observation of the Josephson oscillation and the MQST. Received 29 June 2001 and Received in final form 17 September 2001  相似文献   

10.
We have investigated the center-of-mass oscillations of a 87Rb Bose-Einstein condensate in an elongated magneto-static trap. We start from a trapped condensate and we transfer part of the atoms to another trapped level, by applying a radio-frequency pulse. The new condensate is produced far from its equilibrium position in the magnetic potential, and periodically collides with the parent condensate. We discuss how both the damping and the frequency shift of the oscillations are affected by the mutual interaction between the two condensates, in a wide range of trapping frequencies. The experimental data are compared with the prediction of a mean-field model. Received 28 May 2001  相似文献   

11.
We demonstrate, both from a theoretical and an experimental point of view, the possibility of realizing a weak coupling between two Bose-Einstein condensates trapped in different Zeeman states. The weak coupling drives macroscopic quantum oscillations between the condensate populations and the observed current-phase dynamics is described by generalized Josephson equations. In order to highlight the superfluid nature of the oscillations, we investigate the response of a 87Rb non-condensate (thermal) gas in the same conditions, showing that the thermal oscillations damp more quickly than those of the condensate. Received 2 May 2002 / Received in final form 19 November 2002 Published online 6 March 2003 RID="a" ID="a"e-mail: smerzi@sissa.it  相似文献   

12.
We study a dynamical scheme for condensation of bosonic trapped gases beyond the Lamb-Dicke limit, when the photon-recoil energy is larger than the energy spacing of the trap. Using quantum master equation formalism we demonstrate that dark-state cooling methods similar to those designed for a single trapped atom allow for the condensation of a collection of bosons into a single state of the trap, either the ground, or an excited state. By means of Monte-Carlo simulations we analyse the condensation dynamics for different dimensions, and for different cooling schemes. Received 30 November 1998 and Received in final form 20 March 1999  相似文献   

13.
Effects of the traps are investigated on the dynamics of two coupled Bose-Einstein condensates, and the atom population transfer between the two condensates is discussed. It is found that the traps and the initial condition determine the switching and self-trapping effects on the atom population imbalance. There are the critical potential amplitude and the critical potential width, by which the oscillation manner of the population transferring ratio can be analyzed as time changes.  相似文献   

14.
The atom optics of Bose-Einstein condensates containing a vortex of circulation one is discussed. We first analyze in detail the reflection of such a condensate falling on an atomic mirror. In a second part, we consider a rotating condensate in the case of attractive interactions. We show that for sufficiently large nonlinearity the rotational symmetry of the rotating condensate is broken. Received 16 September 2002 / Received in final form 17 November 2002 Published online 11 February 2003  相似文献   

15.
We study a confined mixture of bosons and fermions in the regime of quantal degeneracy, with particular attention to the effects of the interactions on the kinetic energy of the fermionic component. We are able to explore a wide region of system parameters by identifying two scaling variables which completely determine its state at low temperature. These are the ratio of the boson-fermion and boson-boson interaction strengths and the ratio of the radii of the two clouds. We find that the effect of the interactions can be sizeable for reasonable choices of the parameters and that its experimental study can be used to infer the sign of the boson-fermion scattering length. The interplay between interactions and thermal effects in the fermionic kinetic energy is also discussed. Received 13 September 1999 and Received in final form 22 February 2000  相似文献   

16.
We study the occurrence of a Bose-Einstein transition in a dilute gas with repulsive interactions, starting from temperatures above the transition temperature. The formalism, based on the use of Ursell operators, allows us to evaluate the one-particle density operator with more flexibility than in mean-field theories, since it does not necessarily coincide with that of an ideal gas with adjustable parameters (chemical potential, etc.). In a first step, a simple approximation is used (Ursell-Dyson approximation), which allow us to recover results which are similar to those of the usual mean-field theories. In a second step, a more precise treatment of the correlations and velocity dependence of the populations in the system is elaborated. This introduces new physical effects, such as a change of the velocity profile just above the transition: the proportion of atoms with low velocities is higher than in an ideal gas. A consequence of this distortion is an increase of the critical temperature (at constant density) of the Bose gas, in agreement with those of recent path integral Monte-Carlo calculations for hard spheres. Received 13 November 1998  相似文献   

17.
We discuss the dynamics of two weakly coupled Bose-Einstein condensates in a double-well potential, contrasting the mean-field picture to the exact N-particle evolution. On the mean-field level, a self-trapping transition occurs when the scaled interaction strength exceeds a critical value; this transition essentially persists in small condensates comprising about 1000 atoms. When the double-well is modulated periodically in time, Floquet-type solutions to the nonlinear Schr?dinger equation take over the role of the stationary mean-field states. These nonlinear Floquet states can be classified as “unbalanced” or “balanced”, depending on whether or not they entail long-time confinement of most particles to one well. Since the emergence of unbalanced Floquet states depends on the amplitude and frequency of the modulating force, we predict that the onset of self-trapping can efficiently be controlled by varying these parameters. This prediction is verified numerically by both mean-field and N-particle calculations. Received 5 November 2000 and Received in final form 16 February 2001  相似文献   

18.
We recently observed a Bose-Einstein condensate in a dilute gas of 4He in the 23S1 metastable state. In this article, we describe the successive experimental steps which led to the Bose-Einstein transition at 4.7 μK: loading of a large number of atoms in a MOT, efficient transfer into a magnetic Ioffé-Pritchard trap, and optimization of the evaporative cooling ramp. Quantitative measurements are also given for the rates of elastic and inelastic collisions, both above and below the transition. Received 15 October 2001  相似文献   

19.
We present a self-consistent method of taking into account back action of a laser radiation to a Bose-Einstein condensate of neutral atoms. The light is coherently scattered inside the degenerate atomic sample, thus its intensity and, consequently, the atomic ground level AC Stark shift are spatially varying. This leads to a small deformation of the atomic cloud and, if the external radiation is abruptly switched off, to generation of collective excitations. Received 8 May 1999 and Received in final form 11 October 1999  相似文献   

20.
In the absence of losses the phase of a Bose-Einstein condensate undergoes collapses and revivals in time due to elastic atomic interactions. As experiments necessarily involve inelastic collisions, we develop a model to describe the phase dynamics of the condensates in presence of collisional losses. We find that a few inelastic processes are sufficient to damp the revivals of the phase. For this reason the observability of phase revivals for present experimental conditions is limited to condensates with a few hundreds of atoms. Received: 23 February 1998 / Revised: 21 July 1998 / Accepted: 23 July 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号