首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis and characterisation of novel Li and Yb complexes is reported, in which the monoanionic beta-diketiminato ligand has been (i) reduced (SET or 2 [times] SET), (ii) deprotonated, or (iii) C-N bond-cleaved. Reduction of the lithium beta-diketiminate Li(L(R,R'))[L(R,R')= N(SiMe(3))C(R)CHC(R')N(SiMe(3))] with Li metal gave the dilithium derivative [Li(tmen)(mu-L(R,R'))Li(OEt(2))](R = R'= Ph; or, R = Ph, R[prime or minute]= Bu(t)). When excess of Li was used the dimeric trilithium [small beta]-diketiminate [Li(3)(L(R,R[prime or minute]))(tmen)](2)(, R = R'= C(6)H(4)Bu(t)-4 = Ar) was obtained. Similar reduction of [Yb(L(R,R'))(2)Cl] gave [Yb[(mu-L(R,R'))Li(thf)](2)](, R = R[prime or minute]= Ph; or, R = R'= C(6)H(4)Ph-4 = Dph). Use of the Yb-naphthalene complex instead of Li in the reaction with [Yb(L(Ph,Ph))(2)] led to the polynuclear Yb clusters [Yb(3)(L(Ph,Ph))(3)(thf)], [Yb(3)(L(Ph,Ph))(2)(dme)(2)], or [Yb(5)(L(Ph,Ph))(L(1))(L(2))(L(3))(thf)(4)] [L(1)= N(SiMe(3))C(Ph)CHC(Ph)N(SiMe(2)CH(2)), L(2)= NC(Ph)CHC(Ph)H, L(3)= N(SiMe(2)CH(2))] depending on the reaction conditions and stoichiometry. The structures of the crystalline complexes 4, 6x21/2(hexane), 5(C(6)D(6)), and have been determined by X-ray crystallography (and have been published).  相似文献   

2.
The tetracyclic dilithio-Si,Si'-oxo-bridged bis(N,N'-methylsilyl-beta-diketiminates) 2 and 3, having an outer LiNCCCNLiNCCCN macrocycle, were prepared from [Li{CH(SiMe(3))SiMe(OMe)(2)}](infinity) and 2 PhCN. They differ in that the substituent at the beta-C atom of each diketiminato ligand is either SiMe(3) (2) or H (3). Each of and has (i) a central Si-O-Si unit, (ii) an Si(Me) fragment N,N'-intramolecularly bridging each beta-diketiminate, and (iii) an Li(thf)(2) moiety N,N'-intermolecularly bridging the two beta-diketiminates (thf = tetrahydrofuran). Treatment of [Li{CH(SiMe(3))(SiMe(2)OMe)}](8) with 2Me(2)C(CN)(2) yielded the amorphous [Li{Si(Me)(2)((NCR)(2)CH)}](n) [R = C(Me)(2)CN] (4). From [Li{N(SiMe(3))C(Bu(t))C(H)SiMe(3)}](2) (A) and 1,3- or 1,4-C(6)H(4)(CN)(2), with no apparent synergy between the two CN groups, the product was the appropriate (mu-C(6)H(4))-bis(lithium beta-diketiminate) 6 or 7. Reaction of [Li{N(SiMe(3))C(Ph)=C(H)SiMe(3)}(tmeda)] and 1,3-C(6)H(4)(CN)(2) afforded 1,3-C(6)H(4)(X)X' (X =CC(Ph)N(SiMe3)Li(tmeda)N(SiMe3)CH; X' = CN(SiMe3)Li(tmeda)NC(Ph)=C(H)SiMe3)(9). Interaction of A and 2[1,2-C(6)H(4)(CN)(2)] gave the bis(lithio-isoindoline) derivative [C6H4C(=NH)N{Li(OEt2)}C=C(SiMe3)C(Bu(t))=N(SiMe3)]2 (5). The X-ray structures of 2, 3, 5 and 9 are presented, and reaction pathways for each reaction are suggested.  相似文献   

3.
The synthesis of a range of alkyl/chloro-gallium alkoxide and amido/alkoxide compounds was achieved via a series of protonolysis and alcoholysis steps. The initial reaction involved the synthesis of [Me(Cl)Ga{N(SiMe(3))(2)}](2) (1) via methyl group transfer from the reaction of GaCl(3) with two equivalents of LiN(SiMe(3))(2). Reaction of 1 with varying amounts of ROH resulted in the formation of [Me(Cl)Ga(OR)](2) (2, R = CH(2)CH(2)OMe; 3, CH(CH(3))CH(2)NMe(2)), [Me(Cl)Ga{N(SiMe(3))(2)}(μ(2)-OR)Ga(Cl)Me] (4, R = CH(2)CH(2)NMe(2)), or [MeGa(OR)(2)] (5, R = CH(CH(3))CH(2)NMe(2)). Compound 4 represents an intermediate in the formation of dimeric complexes, of the type [Me(Cl)Ga(OR)](2), when formed from compound [Me(Cl)Ga{N(SiMe(3))(2)}](2). A methylgallium amido/alkoxide complex [MeGa{N(SiMe(3))(2)}(OCH(2)CH(2)OMe)](2) (6) was isolated when 2 was further reacted with LiN(SiMe(3))(2). In addition, reaction of 2 with HO(t)Bu resulted in a simple alcohol/alkoxide exchange and formation of [Me(Cl)Ga(O(t)Bu)](2) (7). In contrast to the formation of 1, the in situ reaction of GaCl(3) with one equivalent of LiN(SiMe(3))(2) yielded [Cl(2)Ga{N(SiMe(3))(2)}](2) in low yield, where no methyl group transfer has occurred. Reaction of alcohol with [Cl(2)Ga{N(SiMe(3))(2)}](2) was then found to yield [Cl(2)Ga(OR)](2) (8, R = CH(2)CH(2)NMe(2)), and further reaction of 8 with LiN(SiMe(3))(2) yielded the gallium amido alkoxide complex, [ClGa{N(SiMe(3))(2)}(OR)](2) (9, R = CH(2)CH(2)NMe(2)), similar to 6. The structures of compounds 4, 5, 7, and 8 have been determined by single-crystal X-ray diffraction.  相似文献   

4.
Kühl O  Blaurock S 《Inorganic chemistry》2004,43(21):6543-6545
The reaction of the unsymmetric bisphosphanyl urea ligand P(OC(6)H(3)Bu(t)(2)-2,4)(2)N(Me)C(O)N(Me)PPh(2) with [Pd(cod)Cl(2)] (cod = 1,5-cyclooctadiene) results in the chiral palladacycle (R,S)(A2)-[Pd(kappa(2)-P,P-[P(OC(6)H(3)Bu(t)(2)-2,4)(2)N(Me)C(O)N(Me)PPh(2)]Cl(2)]. The chirality of the title compound is caused by the tilting of the central, six-membered PdP(2)N(2)C ring along one of the two P-N vectors and comprises two chiral planes and one chiral axis.  相似文献   

5.
Reaction of the proligand Ph2PN(SiMe3)2 (L1) with WCl6 gives the oligomeric phosphazene complex [WCl4(NPPh2)]n, 1 and subsequent reaction with PMe2Ph or NBu4Cl gives [WCl4(NPPh2)(PMe2Ph)] (2) or [WCl5(NPPh2)][NBu4] (3), respectively. DF calculations on [WCl5(NPPh2)][NBu4] show a W=N double bond (1.756 A) and a P-N bond distance of 1.701 A, which combined with the geometry about the P atom suggests, there is no P-N multiple bonding. Reaction of L1 with [ReOX3(PPh3)2] in MeCN (X = Cl or Br) gives [ReX2(NC(CH3)P(O)Ph2)(MeCN)(PPh3)](X = Cl, 4, X = Br, 5) which contains the new phosphorylketimido ligand. It is bound to the rhenium centre with a virtually linear Re-N-C arrangement (Re-N-C angle = 176.6 degrees, when X = Cl) and there is multiple bonding between Re and N (Re-N = 1.809(7) A when X = Cl). The proligand Ph2PNHNMe2(L2H) reacts with [(C5H5)TiCl3] to give [(C5H5)TiCl2(Me2NNPPh2)] (6). An X-ray crystal structure of the complex shows the ligand (L2) is bound by both nitrogen atoms. Reaction of the proligands Ph2PNHNR2[R2 = Me2 (L2H), -(CH2CH2)2NCH3 (L3H), (CH2CH2)2CH2 (L4H)] with [{RuCl(mu-Cl)(eta6-p-MeC6H4iPr)}2] gave [RuCl2(eta6-p-MeC6H4iPr)L] {L = L2H (7), L3H (8), L4H (9)}. The X-ray crystal structures of 7-9 confirmed that the phosphinohydrazine ligand is neutral and bound via the phosphorus only. Reaction of complexes 7-9 with AgBF4 resulted in chloride ion abstraction and the formation of the cationic species [RuCl(6-p-MeC6H4iPr)(L)]+ BF4- {(L = L2H (10), L3H (11), L4H (12)}. Finally, reaction of complex 6 with [{RuCl(mu-Cl)(eta6-p-MeC6H4iPr)}2] gave the binuclear species [(eta6-p-MeC6H4iPr)Cl2Ru(mu2,eta3-Ph2PNNMe2)TiCl2(C5H5)], 13.  相似文献   

6.
Several azaheterometallocubane complexes containing [MTi3N4] cores have been prepared by the reaction of [{Ti(eta5-C5Me5)(mu-NH)}3(mu3-N)] (1) with zinc(II) and copper(I) derivatives. The treatment of 1 with zinc dichloride in toluene at room temperature produces the adduct [Cl2Zn{(mu3-NH)3Ti3(eta5-C5Me5)3(mu3-N)}] (2). Attempts to crystallize 2 in dichloromethane gave yellow crystals of the ammonia adduct [(H3N)Cl2Zn{(mu3-NH)Ti3(eta5-C5Me5)3(mu-NH)2(mu3-N)}] (3). The analogous reaction of 1 with alkyl, (trimethylsilyl)cyclopentadienyl, or amido zinc complexes [ZnR2] leads to the cube-type derivatives [RZn{(mu3-N)(mu3-NH)2Ti3(eta5-C5Me5)3(mu3-N)}] (R = CH2SiMe3 (5), CH2Ph (6), Me (7), C5H4SiMe3 (8), N(SiMe3)2 (9)) via RH elimination. The amido complex 9 decomposes in the presence of ambient light to generate the alkyl derivative [{Me3Si(H)N(Me)2SiCH2}Zn{(mu3-N)(mu3-NH)2Ti3(eta5-C5Me5)3(mu3-N)}] (10). The chloride complex 2 reacts with lithium cyclopentadienyl or lithium indenyl reagents to give the cyclopentadienyl or indenyl zinc derivatives [RZn{(mu3-N)(mu3-NH)2Ti3(eta5-C5Me5)3(mu3-N)}] (R = C5H5 (11), C9H7 (12)). Treatment of 1 with copper(I) halides in toluene at room temperature leads to the adducts [XCu{(mu3-NH)3Ti3(eta5-C5Me5)3(mu3-N)}] (X = Cl (13), I (14)). Complex 13 reacts with lithium bis(trimethylsilyl)amido in toluene to give the precipitation of [{Cu(mu4-N)(mu3-NH)2Ti3(eta5-C5Me5)3(mu3-N)}2] (15). Complex 15 is prepared in a higher yield through the reaction of 1 with [{CuN(SiMe3)2}4] in toluene at 150 degrees C. The addition of triphenylphosphane to 15 in toluene produces the single-cube compound [(Ph3P)Cu{(mu3-N)(mu3-NH)2Ti3(eta5-C5Me5)3(mu3-N)}] (16). The X-ray crystal structures of 3, 8, 9, and 15 have been determined.  相似文献   

7.
The crystalline dimeric 1-azaallyllithium complex [Li{mu,eta(3-N(SiMe3)C(Ad)C(H)SiMe3}]2 (1) was prepared from equivalent portions of Li[CH(SiMe3)2] and 1-cyanoadamantane (AdCN). Complex was used as precursor to each of the crystalline complexes 2-8 which were obtained in good yield. By 1-azaallyl ligand transfer, 1 afforded (i) [Al{eta3-N(SiMe3)C(Ad)C(H)SiMe3}{kappa1-N(SiMe3)C(Ad)=C(H)SiMe3-E}Me] (5) with [AlCl2Me](2), (ii) [Sn{eta3-N(SiMe3)C(Ad)C(H)SiMe3}2] (7) with Sn[N(SiMe3)2]2, and (iii) [Li(N{C(Ad)=C(H)SiMe3-E}{Si(NN)SiMe3})(thf)2] (8) with the silylene Si[(NCH(2)Bu(t))2C6H(4)-1,2] [= Si(NN)]. By insertion into the C[triple bond, length as m-dash]N bond of the appropriate cyanoarene RCN, gave the beta-diketiminate [Li{mu-N(SiMe3)C(Ad)C(H)C(R)NSiMe3}]2 [R = Ph (2), C(6)H(4)Me-4 (3)], and yielded [Al{kappa2-N(SiMe3)C(Ad)C(H)C(Ph)NSiMe3}{kappa1-N(SiMe3)C(Ad)=C(H)SiMe3-E}Me] (6). The beta-diketiminate [Al{kappa2-N(SiMe3)C(Ad)C(H)C(Ph)NSiMe3}Me2] (4) was prepared from 2 and [AlClMe2]2. The X-ray structures of 1 and 3-8 are presented. Multinuclear NMR spectra in C6D6 or C6D5CD3 have been recorded for each of 1-8; such data on 8 revealed that in solution two minor isomers were also present.  相似文献   

8.
Reactions of diphosphinohydrazines R-NH-N(PPh(2))(2) (R = tBu (1), Ph(2)P (3)) with some metalation reagents (Co[N(SiMe(3))(2)](2), LiN(SiMe(3))(2), La[N(SiMe(3))(2)](3), nBuLi, MeLi) were performed. Compound 1 was synthesized by the reaction of Ph(2)PCl with tert-butylhydrazine hydrochloride in 83% yield. This compound reveals temperature-dependent (31)P NMR spectra due to hindered rotation about the P-N bonds. Complicated redox reaction of 1 with Co[N(SiMe(3))(2)](2) proceeds with cleavage of the P-N and N-N bonds to form a binuclear cobalt complex [Co{HN(PPh(2))(2)-κ(2)P,P'}(2)(μ-PPh(2))](2) (2) demonstrating a short Co···Co distance of 2.3857(5) ?, which implies a formal double bond between the Co atoms. Strong nucleophiles (nBuLi, MeLi) cause fragmentation of the molecules 1 and 3, while reactions of 3 with lithium and lanthanum silylamides give products of the NNP → NPN rearrangement [Li{Ph(2)P(NPPh(2))(2)-κ(2)N,N'}(THF)(2)] (4) and [La{Ph(2)P(NPPh(2))(2)-κ(2)N,N'}{N(SiMe(3))(2)}(2)] (5), respectively. These complexes represent the first examples of a κ(2)N,N' bonding mode for the triphosphazenide ligand [(Ph(2)PN)(2)PPh(2)](-). DFT calculations showed large energy gain (52.1 kcal/mol) of the [NNP](-) to [NPN](-) anion rearrangement.  相似文献   

9.
The reactions of [Li(2)[PhB(N(t)Bu)(2)]](2) with GaCl(3) in various stoichiometries yield [Li(thf)(4)][PhB(mu-N(t)Bu)(2)GaCl(2) x GaCl(3)] (1), [PhB(mu-N(t)Bu)(2)GaCl](2) (2), and [mu-Li(OEt(2))[PhB(N(t)Bu)(2)]Ga] (3a), a series of complexes in which the three chloride ligands are successively replaced by the dianion [PhB(N(t)Bu)(2)](2-). The X-ray structures of 1, 2, and 3a show that the boraamidinate ligand adopts an N,N'-chelating mode. In the ion-separated complex 1, one of the nitrogen atoms is coordinated to a GaCl(3) molecule. The related indium complexes [mu-LiCl(thf)(2)][PhB(mu-N(t)Bu)(2)InCl](2) (4) and [mu-Li(OEt(2))[PhB(mu-N(t)Bu)(2)]In] (3b) were obtained in a similar manner. Complex 4 is the indium analogue of 2 with the incorporation of a bissolvated LiCl molecule. In 3a and 3b the spirocyclic [[PhB(mu-N(t)Bu)(2)](2)M](-) (M = Ga, In) anions are N,N'-chelated to the [Li(OEt(2))](+) counterion. Prolonged reactions result in the formation of [PhB(mu-N(t)Bu)(2)GaCl][(t)BuN(H)GaCl(2)] (5) and [[PhB(mu-N(t)Bu)(2)InCl][(t)BuN(H)InCl(2)][mu-LiCl(OEt(2))(2)]] (6), respectively. The X-ray structures of 5 and 6 reveal bicyclic structures which formally involve the entrapment of the monomers (t)BuN(H)MCl(2) by a four-membered BN(2)M ring (M = Ga, In). The synthesis and X-ray structure of Cl(2)Ga[mu-N(H)(t)Bu](2)GaCl(2) are also reported.  相似文献   

10.
The orthopalladation of iminophosphoranes [R(3)P=N-C(10)H(7)-1] (R(3) = Ph(3) 1, p-Tol(3) 2, PhMe(2) 3, Ph(2)Me 4, N-C(10)H(7)-1 = 1-naphthyl) has been studied. It occurs regioselectively at the aryl ring bonded to the P atom in 1 and 2, giving endo-[Pd(μ-Cl)(C(6)H(4)-(PPh(2=N-1-C(10)H(7))-2)-κ-C,N](2) (5) or endo-[Pd(μ-Cl)(C(6)H(3)-(P(p-Tol)(2)=N-C(10)H(7)-1)-2-Me-5)-κ-C,N](2) (6), while in 3 the 1-naphthyl group is metallated instead, giving exo-[Pd(μ-Cl)(C(10)H(6)-(N=PPhMe(2))-8)-κ-C,N](2) (7). In the case of 4, orthopalladation at room temperature affords the kinetic exo isomer [Pd(μ-Cl)(C(10)H(6)-(N=PPh(2)Me)-8)-κ-C,N](2) (11exo), while a mixture of 11exo and the thermodynamic endo isomer [Pd(μ-Cl)(C(6)H(4)-(PPhMe=N-C(10)H(7)-1)-2)-κ-C,N](2) (11endo) is obtained in refluxing toluene. The heating in toluene of the acetate bridge dimer [Pd(μ-OAc)(C(10)H(6)-(N=PPh(2)Me)-8)-κ-C,N](2) (13exo) promotes the facile transformation of the exo isomer into the endo isomer [Pd(μ-OAc)(C(6)H(4)-(PPhMe=N-C(10)H(7)-1)-2)-κ-C,N](2) (13endo), confirming that the exo isomers are formed under kinetic control. Reactions of the orthometallated complexes have led to functionalized molecules. The stoichiometric reactions of the orthometallated complexes [Pd(μ-Cl)(C(10)H(6)-(N=PPhMe(2))-8)-κ-C,N](2) (7), [Pd(μ-Cl)(C(6)H(4)-(PPh(2)[=NPh)-2)](2) (17) and [Pd(μ-Cl)(C(6)H(3)-(C(O)N=PPh(3))-2-OMe-4)](2) (18) with I(2) or with CO results in the synthesis of the ortho-halogenated compounds [PhMe(2)P=N-C(10)H(6)-I-8] (19), [I-C(6)H(4)-(PPh(2)=NPh)-2] (21) and [Ph(3)P=NC(O)C(6)H(3)-I-2-OMe-5] (23) or the heterocycles [C(10)H(6)-(N=PPhMe(2))-1-(C(O))-8]Cl (20), [C(6)H(5)-(N=PPh(2)-C(6)H(4)-C(O)-2]ClO(4) (22) and [C(6)H(3)-(C(O)-1,2-N-PPh(3))-OMe-4]Cl (24).  相似文献   

11.
The orientation of the orthopalladation of iminophosphoranes R3P=NCH2Aryl (R=Ph, Aryl=Ph (1a), C6H(4)-2-Br (1b), C6H4-Me-2 (1e), C6H3-(Me)(2)-2,5 (1f); R=p-tolyl, Aryl=Ph (1c); R=m-tolyl, Aryl=Ph (1d); R3P=MePh2P, and Aryl=Ph (1g)) has been studied. 1a reacts with Pd(OAc)2 (OAc=acetate) giving endo-[Pd(micro-Cl){C,N-C6H4(PPh2=NCH2Ph)-2}]2 (3a), while exo-[Pd(micro-Br){C,N-C6H4(CH2N=PPh3)-2}]2 (3b) could only be obtained by the oxidative addition of 1b to Pd2(dba)3. The endo form of the metalated ligand is favored kinetically and thermodynamically, as shown by the conversion of exo-[Pd(micro-OAc){C,N-C6H4(CH2N=PPh3)-2}]2 (2b) into endo-[Pd(micro-OAc){C,N-C6H4(PPh2=NCH2Ph)-2}]2 (2a) in refluxing toluene. The orientation of the reaction is not affected by the introduction of electron-releasing substituents at the Ph rings of the PR3 (1c and 1d) or the benzyl units (1e and 1f), and endo complexes (3c-3f) were obtained in all cases. The palladation of MePh2P=NCH2Ph (1g) can be regioselectively oriented as a function of the solvent. The exo isomer [Pd(micro-Cl){C6H4(CH2N=PPh2Me)-2}]2 (exo-3g) is obtained in refluxing CH2Cl2, while endo-[Pd(micro-Cl){C,N-C6H4(PPh(Me)=NCH2Ph)-2}]2 (endo-3g) can be isolated as a single isomer in refluxing toluene. In this case, the exo metalation is kinetically favored while an endo process occurs under thermodynamic control, as shown through the rearrangement of [Pd(micro-OAc){C6H4(CH2N=PPh2Me)-2}]2 (exo-2g) into [Pd(micro-OAc){C,N-C6H4(P(Ph)Me=NCH2Ph)-2}]2 (endo-2g) in refluxing toluene. The preference for the endo palladation of 1a and the kinetic versus thermodynamic control in 1g has been explained through DFT studies of the reaction mechanism.  相似文献   

12.
New spirocyclic (amino/amido)tetraoxyphosphoranes CH(2)(6-t-Bu-4-Me-C(6)H(2)O)(2)P(NRR')(O(2)C(6)Cl(4)) [R = Me, R' = Ph (1), R = R' = i-Pr (2); R = R' = H (3); R = H, R' = Ph (4)] and the isothiocyanatotetraoxyphosphorane CH(2)(6-t-Bu-4-Me-C(6)H(2)O)(2)P(NCS)(O(2)C(6)Cl(4)) (5) have been synthesized. X-ray crystallography for these compounds reveals that -N(Me)Ph, -N(i-Pr)(2), and -NCS groups occupy an apical position whereas -NH(2) and -NHPh groups occupy an equatorial position in a trigonal bipyramidal geometry around phosphorus. These results are in contrast with the common assumption that a sterically bulky and less electronegative substituent [e.g. -N(i-Pr)(2)] should be less apicophilic than a sterically small and more electronegative substituent (e.g. -NH(2)). The possible rationalization for these results is discussed. Variable-temperature ((1)H, (31)P) NMR spectra of these compounds show some unusual features not reported before for pentacoordinate phosphorus. Probable intramolecular processes involving (i) apical-equatorial <--> equatorial-apical exchange, (ii) apical-equatorial <--> equatorial-equatorial exchange, and (iii) boat-chair <--> tub (for the eight-membered ring) interconversion as well as cessation of the P-N bond rotation have been invoked to explain the spectral features.  相似文献   

13.
Reactions of the lithiated diamido-pyridine or diamido-amine ligands Li(2)N(2)N(py) or Li(2)N(2)N(am) with [W(NAr)Cl(4)(THF)] (Ar = Ph or 2,6-C(6)H(3)Me(2); THF = tetrahydrofuran) afforded the corresponding imido-dichloride complexes [W(NAr)(N(2)N(py))Cl(2)] (R = Ph, 1, or 2,6-C(6)H(3)Me(2), 2) or [W(NAr)(N(2)N(am))Cl(2)] (R = Ph, 3, or 2,6-C(6)H(3)Me(2), 4), respectively, where N(2)N(py) = MeC(2-C(5)H(4)N)(CH(2)NSiMe(3))(2) and N(2)N(am) = Me(3)SiN(CH(2)CH(2)NSiMe(3))(2). Subsequent reactions of 1 with MeMgBr or PhMgCl afforded the dimethyl or diphenyl complexes [W(NPh)(N(2)N(py))R(2)] (R = Me, 5, or Ph, 6), respectively, which have both been characterized by single crystal X-ray diffraction. Reactions of Li(2)N(2)N(py) or Li(2)N(2)N(am) with [Mo(NR)(2)Cl(2)(DME)] (R = (t)Bu or Ph; DME = 1,2-dimethoxyethane) afforded the corresponding bis(imido) complexes [Mo(NR)(2)(N(2)N(py))] (R = (t)Bu, 7, or Ph, 8) and [Mo(N(t)Bu)(2)(N(2)N(am))] (9).  相似文献   

14.
The hexaphosphapentaprismane P(6)C(4)(t)Bu(4) undergoes specific insertion of the zerovalent platinum fragment [Pt(PPh(3))(2)] into the unique P-P bond between the 5-membered rings to afford [Pt(PPh(3))(2)P(6)C(4)(t)Bu(4)]. A similar reaction with the Pt(ii) complexes [{PtCl(2)(PMe(3))}(2)] and [PtCl(2)(eta(4)-COD)] results in both insertion and chlorine migration reactions. The complexes [Pt(PPh(3))(2)P(6)C(4)(t)Bu(4)], trans-[PtCl(PMe(3))P(6)C(4)(t)Bu(4)Cl], cis-,trans-[{PtCl(2)(PMe(3))}micro-{P(6)C(4)(t)Bu(4)}{PtCl(2)(PMe(3))}], [{PtClP(6)C(4)(t)Bu(4)Cl}(2)] and cis-[PtClP(6)C(4)(t)Bu(4)Cl(P(6)C(4)(t)Bu(4))] have been structurally characterized by single crystal X-ray diffraction and multinuclear NMR studies.  相似文献   

15.
The synthesis of the following crystalline complexes is described: [Li(L)(thf)2] (), [Li(L)(tmeda)] (), [MCl2(L)] [M=Al (), Ga ()], [In(Cl)(L)(micro-Cl)2Li(OEt2)2] (), [In(Cl)(L){N(H)C6H3Pri(2)-2,6}] (), [In(L){N(H)C6H3Pri(2)-2,6}2] (), [{In(Cl)(L)(micro-OH)}2] (), [L(Cl)In-In(Cl)(L)] () (the thf-solvate, the solvate-free and the hexane-solvate), [{In(Cl)L}2(micro-S)] () and [InCl2(L)(tmeda)] () ([L]-=[{N(C6H3Pri(2)-2,6)C(H)}2CPh]-). From H(L) (), via Li(L) in Et2O, and thf, tmeda, AlCl3, GaCl3 or InCl3 there was obtained , , , or , respectively in excellent yield. Compound was the precursor for each of , and [{InCl3(tmeda)2{micro-(OSnMe2)2}}] () by treatment with one () or two () equivalents of K[N(H)(C6H3Pri(2)-2,6)], successively Li[N(SiMe3)(C6H3Pri(2)-2,6)] and moist air (), Na in thf (), tmeda (), or successively tmeda and Me3SnSnMe3 (). Crystals of (with an equivalent of In) and were obtained from InCl or thermolysis of [In(Cl)(L){N(SiMe3)(C6H3Pri(2)-2,6)}] () {prepared in situ from and Li[N(SiMe3)(C6H3Pri(2)-2,6)] in Et2O}, respectively. Compound was obtained from a thf solution of and sulfur. X-Ray data for crystalline , , , , , and are presented. The M(L) moiety in each (not the L-free ) has the monoanionic L ligated to the metal in the N,N'-chelating mode. The MN1C1C2C3N2 six-membered M(L) ring is pi-delocalised and has the half-chair (, and ) or boat (, and ) conformation.  相似文献   

16.
A study regarding coordination chemistry of the bis(diphenylphosphino)amide ligand Ph(2) P-N-PPh(2) at Group?4 metallocenes is presented herein. Coordination of N,N-bis(diphenylphosphino)amine (1) to [(Cp(2) TiCl)(2) ] (Cp=η(5) -cyclopentadienyl) generated [Cp(2) Ti(Cl)P(Ph(2) )N(H)PPh(2) ] (2). The heterometallacyclic complex [Cp(2) Ti(κ(2) -P,P-Ph(2) P-N-PPh(2) )] (3?Ti) can be prepared by reaction of 2 with n-butyllithium as well as from the reaction of the known titanocene-alkyne complex [Cp(2) Ti(η(2) -Me(3) SiC(2) SiMe(3) )] with the amine 1. Reactions of the lithium amide [(thf)(3) Li{N(PPh(2) )(2) }] with [Cp(2) MCl(2) ] (M=Zr, Hf) yielded the corresponding zirconocene and hafnocene complexes [Cp(2) M(Cl){κ(2) -N,P-N(PPh(2) )(2) }] (4?Zr and 4?Hf). Reduction of 4?Zr with magnesium gave the highly strained heterometallacycle [Cp(2) Zr(κ(2) -P,P-Ph(2) P-N-PPh(2) )] (3?Zr). Complexes 2, 3?Ti, 4?Hf, and 3?Zr were characterized by X-ray crystallography. The structures and bondings of all complexes were investigated by DFT calculations.  相似文献   

17.
Zhou M  Gong T  Qiao X  Tong H  Guo J  Liu D 《Inorganic chemistry》2011,50(5):1926-1930
Treatment of the appropriate lithium or sodium 2,4-N,N'-disubstituted 1,3,5-triazapentadienate [RNC(R')NC(R')N(SiMe(3))M](2) (R = Ph, 2,6-(i)Pr(2)-C(6)H(3)(Dipp) or SiMe(3); R' = NMe(2) or 1-piperidino; M = Li or Na) with one or half equivalent portion of MgBr(2)(THF)(2) in Et(2)O under mild conditions furnishes in good yield the first structurally characterized molecular magnesium 2,4-N,N'-disubstituted 1,3,5-triazapentadienates [DippNC(NMe(2))NC(NMe(2))N(SiMe(3))MgBr](2) (1), [{RNC(R')NC(R')N(SiMe(3))}(2)Mg] (R = Ph, R' = NMe(2) 2; R = Ph, R' = 1-piperidino 3; R = SiMe(3), R' = 1-piperidino 4). The solid-state structure of 1 is dimeric and those of 2, 3, and 4 are monomeric. The ligand backbone NCNCN in 1 adopts a W-shaped configuration, while in 2, 3 and 4 adopts a U-shaped configuration.  相似文献   

18.
Zhang W  Nomura K 《Inorganic chemistry》2008,47(14):6482-6492
A series of (1-adamantylimido)vanadium(V) complexes containing anionic donor ligands of the type, V(NAd)Cl2(L) [Ad = 1-adamantyl; L = O-2,6-Me2C6H3 (2), O-2,6-(i)Pr2C6H3 (3), NC(t)Bu2 (5), NC((t)Bu)CH2SiMe3 (6), NC((t)Bu)Ph (7), NCPh2 (8)], have been prepared from V(NAd)Cl 3, which was in turn prepared from VOCl3 by treatment with 1-adamantylisocyanate in octane, by treatment with the corresponding lithium salts (lithium phenoxides, lithium ketimides) in Et2O. These complexes (2, 3, 5-8) were identified by NMR spectroscopy and elemental analysis, and the structures for 2 and 5 were determined by X-ray crystallography. The reaction of V(NAd)Cl3 with 2,6-dimethylphenol in n-hexane afforded the tris(aryloxo) analogue V(NAd)(O-2,6-Me2C6H3)3 (4), the structure of which was determined by X-ray crystallography. 8 gradually decomposed in toluene to give a dimeric species, [N(Ad)H3](+)[V2(mu2-Cl)3Cl2(NAd)2(NCPh2)2](-) (10), but 8 was stabilized as a PMe 3 coordinated species, V(NAd)Cl2(NCPh2)(PMe3)2 (9): the structures for 9 and 10 were determined by X-ray crystallography. These complexes were evaluated as catalyst precursors for ethylene polymerization in the presence of MAO. The ketimide analogues, especially 5, exhibited moderate catalytic activity, and the activity with a series of V(NAd)Cl2(L)-MAO catalyst systems increased in the order: L = NC(t)Bu2 (5, 516 kg-PE/mol x V x h) > NC((t)Bu)Ph (7, 300) > NCPh2 (8, 105) > NC((t)Bu)CH2SiMe3 (6, 70.8). These complexes (2, 3, 5, 6) were found to be effective as catalyst precursors for the ring-opening metathesis polymerization (ROMP) of norbornene (NBE) in the presence of MeMgBr and PMe3.  相似文献   

19.
Titanium-phosphorus frustrated Lewis pairs (FLPs) based on titanocene-phosphinoaryloxide complexes have been synthesised. The cationic titanium(IV) complex [Cp(2)TiOC(6)H(4)P((t)Bu)(2)][B(C(6)F(5))(4)] 2 reacts with hydrogen to yield the reduced titanium(III) complex [Cp(2)TiOC(6)H(4)PH((t)Bu)(2)][B(C(6)F(5))(4)] 5. The titanium(III)-phosphorus FLP [Cp(2)TiOC(6)H(4)P((t)Bu)(2)] 6 has been synthesised either by chemical reduction of [Cp(2)Ti(Cl)OC(6)H(4)P((t)Bu)(2)] 1 with [CoCp*(2)] or by reaction of [Cp(2)Ti{N(SiMe(3))(2)}] with 2-C(6)H(4)(OH){P((t)Bu)(2)}. Both 2 and 6 catalyse the dehydrogenation of Me(2)HN·BH(3).  相似文献   

20.
Selected homoleptic metal beta-diketiminates M(I)L and M(II)L2 [M(I) = Li or K, M(II) = Mg, Ca or Yb; L: L(Ph) = [N(SiMe3)C(Ph)]2CH, L(Bu(t)) = N(SiMe3)C(Ph)C(H)C(Bu(t))N(SiMe3), L* = [N(C6H3Pr(i)2-2,6)C(Me)]2CH] have been studied by cyclic voltammetry (CV). The primary reduction (E(p)red, the peak reduction potential measured vs. SCE in thf containing 0.2 M [NBu4][PF6] with a scan rate 100 mV s(-1) at a vitreous carbon electrode at ambient temperature) is essentially ligand-centred: E(p)red being ca. -2.2 V (LiL(Ph) and KL(Ph)) and -2.4 V [Mg(L(Ph))2, LiL(Bu(t)) and Ca(L(Ph))2], while LiL* is significantly more resistant to reduction (E(p)red = -3.1 V). These observations are consistent with the view that the two (L(Ph)) or single (L(Bu(t))) C-phenyl substituent(s), respectively, are available for -electron-delocalisation of the reduced species, whereas the N-aryl substituents of L* are unable to participate in such conjugation for steric reasons. The primary reduction process was reversible on the CV-time scale only for LiL(Bu(t)), Ca(L(Ph))2 and Yb(L(Ph))2. For the latter this occurs at a potential ca. 500 mV positive of Ca(L(Ph))2, consistent with the notion that the LUMO of Yb(L(Ph))2 has substantial metal character. The successive reversible steps, each separated by ca. 500 mV, indicate that there is strong electronic communication between the two ligands of Yb(L(Ph))2. The overall three-electron transfer sequence shows that the final reduction level corresponds to [Yb(II)(L(Ph))2-(L(Ph))3-]. DFT calculations on complexes Li(L(Ph))(OMe2)2 and Li2(L(Ph))(OMe2)3 showed that both HOMO and LUMO orbitals are only based on the ligand with a HOMO-LUMO gap of 4.21 eV. Similar calculations on a doubly reduced complex Yb[(mu-L(Ph))Li(OMe2)]2 demonstrated that there is a considerable Yb atomic orbital contribution to the HOMO and LUMO of the complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号