首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
A new tridentate pyridyl Schiff base, N-isopropyl-N′-(1-pyridin-2-ylethylidene)ethane-1,2-diamine (L), was used to synthesize two dinuclear cadmium(II) complexes, [Cd2L2(μ 1,1-N3)2(N3)2] (1) and [Cd2L2(μ 1,3-NCS)2(NCS)2] (2). X-ray single crystal structure determination reveals that in both centrosymmetric complexes, the Cd atom is in a distorted octahedral coordination. In the crystal structures of 1 and 2, the dinuclear cadmium(II) complex molecules are linked, respectively, through intermolecular N–H···N and N–H···S hydrogen bonds to form infinite 1D chains. The preliminary fluorescence properties of the complexes were investigated.  相似文献   

2.
A pair of isostructural azido- or thiocyanato-bridged centrosymmetric dinuclear copper(II) complexes, [Cu2L21,3-N3)2] (1) and [Cu2L21,3-NCS)2] (2), derived from the Schiff base ligand 4-nitro-2-[(2-diethylaminoethylimino)methyl]phenol (HL), have been synthesized and characterized by elemental analysis, IR spectra and single crystal X-ray diffraction. Each Cu atom in the complexes is five-coordinate in a square pyramidal geometry by one O and two N atoms of one Schiff base ligand, and by two terminal donor atoms from two bridging azide or thiocyanate ligands. Both the azide and thiocyanate ligands adopt end-to-end bridging mode in the complexes. The distance between the two copper atoms is 5.205(2) Å for (1) and 5.515(2) Å for (2). The antimicrobial activity of the complexes has been tested.  相似文献   

3.
Four new Re(I) tricarbonyl-diimine complexes were prepared by reaction of Re(CO)5Cl with N,N′-bis(substituted benzylidene)ethane-1,2-diamine Schiff base ligands. These compounds were characterized by physico-chemical methods, and their crystal structures were established by X-ray diffraction. The coordination geometry at the Re atom is that of a distorted octahedron, with three carbonyl ligands in the facial geometry.  相似文献   

4.
Lanthanide(III) complexes [Ln(NO3)2(HL)] where Ln?=?La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Yb and Lu and LH2?=?N,N′-bis(quinolin-8-ol-2-ylmethylidene)ethane-1,2-diamine, have been obtained by direct reaction of the di-Schiff base ligand and the corresponding hydrated lanthanide(III) nitrates in methanol/DMF solvent systems. All complexes were characterized with microanalyses, spectroscopically (IR and electronic spectra) and thermogravimetrically. Theoretical studies have also been undertaken to estimate possible structures. All the data are discussed in terms of the nature of the bonding and the possible structural types. All complexes appear to be monomeric with the organic ligand being singly deprotonated and behaving as a hexadentate chelating ligand.  相似文献   

5.
Three novel Schiff base cadmium(II) complexes, derived from the end‐on (μ‐1,1‐N3) azide or end‐to‐end (μ‐1,3‐NCS) thio cyanate bridges and similar tridentate Schiff base ligands, have been synthesized under similar synthetic procedures and their crystal structures determined by X‐ray diffraction methods. They are the dinuclear double end‐on azide‐bridged [Cd2(L1)2(N3)2(μ‐1,1‐N3)2] ( 1 ), the dinuclear double end‐on azide‐bridged [Cd2(L2)2(N3)2(μ‐1,1‐N3)2] ( 2 ), and the dinuclear double end‐to‐end thiocyanate‐bridged [Cd2(L3)2(NCS)2(μ1,3‐NCS)2] ( 3 ), where L1, L2 and L3 are three similar tridentate Schiff bases obtained by condensation of 2‐pyridylaldehyde with N,N‐diethylethane‐1,2‐diamine, of 2‐pyridylaldehyde with N‐isopropylethane‐1,2‐diamine, and of 2‐pyridylaldehyde with N,N‐dimethylpropane‐1,3‐diamine, respectively. Each cadmium(II) centre in the complexes is in a distorted octahedral coordination. There is a crystallographic inversion centre in each of the complexes. The similar small ligands used as the secondary ligands in the preparation of the cadmium(II) complexes with similar Schiff bases can result in similar structures.  相似文献   

6.
Two structurally similar centrosymmetric phenoxo-bridged dinuclear manganese(III) complexes, [Mn2(L1)2(N3)2] (1) and [Mn2(L2)2(NCS)2] (2), were prepared from the tetradentate bis-Schiff base ligands, N,N’-bis(salicylidene)propane-1,2-diamine (H2L1) and N,N’-bis(salicylidene)ethane-1,2-diamine (H2L2), respectively, in the presence of pseudohalides. The complexes have been characterized by FTIR, elemental analyses, and molar conductivity. Structures of the complexes have been confirmed by single-crystal X-ray determination. The bis-Schiff base ligands coordinate with Mn through their phenolate oxygen and imino nitrogen. Each Mn is an octahedral. The complexes showed that they exhibit high activity in catalytic olefin oxidation.  相似文献   

7.
Four new metal-organic coordination compounds [Ni(L4)2](ClO4)2 · 2H2O ( 1 ), [Cu2(L4)2(H2O)2(Cl)](Cl)3 · 5H2O ( 2 ), [Cu2(L3)2(H2O)(Cl)](Cl)2 · (NO3) · 6H2O ( 3 ), and [Cu(L3)(H2O)(NO3)](NO3) · H2O ( 4 ), were synthesized and characterized by X-ray crystallography with two isomeric tripodal ligands N1-(2-amino-ethyl)-N1-pyridin-3-ylmethyl-ethane-1,2-diamine (L3) and N1-(2-amino-ethyl)-N1-pyridin-4-ylmethyl-ethane-1,2-diamine (L4), respectively. It was found that coordination compound 1 exhibits mononuclear structure, and coordination compound 2 displays a one dimensional (1D) zigzag chain structure. Coordination compound 3 shows interesting cyclic hexanuclear structure, whereas coordination compound 4 is a 1D zigzag chain structure. The results indicate that metal ions, organic ligands, and anions have remarkable influence on the formation and structures of the coordination compounds.  相似文献   

8.
The in situ synthesis of the complex, (PPh4)[Mo(CN)3O(aceen)] (aceen = N-[1-(pyridin-2-yl)ethylidene]ethane-1,2-diamine), with a 'half unit' Schiff base ligand (with a free amino group) is described and compared with that of [Mo(CN)2O(diaceen)]·H2O (diaceen = N,N-bis[1-(pyridin-2-yl)ethylidene]ethane-1,2-diamine) in which a 'classical', tetradentate Schiff base ligand is formed. The mechanism of the 'half unit' and 'classical' template Schiff bases ligand formation is discussed.  相似文献   

9.
Two sets of Schiff base ligands, set-1 and set-2 have been prepared by mixing the respective diamine (1,2-propanediamine or 1,3-propanediamine) and carbonyl compounds (2-acetylpyridine or pyridine-2-carboxaldehyde) in 1:1 and 1:2 ratios, respectively and employed for the synthesis of complexes with Ni(II) perchlorate and Ni(II) thiocyanate. Ni(II) perchlorate yields the complexes having general formula [NiL2](ClO4)2 (L = L1 [N1-(1-pyridin-2-yl-ethylidine)-propane-1,3-diamine] for complex 1, L2 [N1-pyridine-2-ylmethylene-propane-1,3-diamine] for complex 2 or L3 [N1-(1-pyridine-2-yl-ethylidine)-propane-1,2-diamine] for complex 3) in which the Schiff bases are mono-condensed terdentate whereas Ni(II) thiocyanate results in the formation of tetradentate Schiff base complexes, [NiL](SCN)2 (L = L4 [N,N′-bis-(1-pyridine-2-yl-ethylidine)-propane-1,3-diamine] for complex 4, L5 [N,N′-bis(pyridine-2-ylmethyline)-propane-1,3-diamine] for complex 5 or L6 [N,N′-bis-(1-pyridine-2-yl-ethylidine)-propane-1,2-diamine] for complex 6) irrespective of the sets of ligands used. Formation of the complexes has been explained by anion modulation of cation templating effect. All the complexes have been characterized by elemental analyses, spectral and electrochemical results. Single crystal X-ray diffraction studies confirm the structures of four representative members, 1, 3, 4 and 5; all of them have distorted octahedral geometry around Ni(II). The bis-complexes of terdentate ligands, 1 and 3 are the mer isomers and the complexes of tetradentate ligands, 4 and 5 possess trans geometry.  相似文献   

10.
New optically active C 2-symmetric salen-type ligands were synthesized on the basis of (4S,5S)-4,5-bis(aminomethyl)-2,2-dimethyl-1,3-dioxolane. These ligands were used to obtain cationic (trifluoromethanesulfonate) and neutral (chloride) rhodium(I) complexes with [(4S,5S)-2,2-dimethyl-5-{[(E)-pyridin-2-ylmethylidene]aminomethyl}-1,3-dioxolan-4-yl]-N-[(E)-pyridin-2-ylmethylidene]methanamine and [2,2-dimethyl-5-{[(E)-quinolin-2-ylmethylidene]aminomethyl}-1,3-dioxolan-4-yl]-N-[(E)-quinolin-2-ylmethylidene] methanamine. The latter complex ensured preparation of (S)-2-phenylethanol with an optical yield of 34.8% by transfer hydrogenation of acetophenone.  相似文献   

11.
Two ligands, N,N′-bis[1-(4-chlorophenyl)ethylidene]ethane-1,2-diamine (L1 ) and N,N′-bis- [1-(4-nitrophenyl)ethylidene]ethane-1,2-diamine (L2 ) and their corresponding copper(I) complexes, [Cu(L 1)2]ClO4 (1) and [Cu(L 2)2]ClO4 (2), have been synthesized and characterized by CHN analyses, 1H-NMR, IR, and UV–Vis spectroscopy. The crystal structures of L1 and [Cu(L 1)2]ClO4 (1) were determined from single crystal X-ray diffraction. L1 lies across a crystallographic inversion center and the C=N is approximately coplanar with the benzene ring and adopts E configuration. The coordination polyhedron about copper(I) in 1 is best described as a distorted tetrahedron. Quasireversible redox behavior is observed for the complexes.  相似文献   

12.
Two azido-bridged polynuclear Cu(II) complexes with the formulae [Cu(L1)(μ1,3-N3)] n and [Cu(L2)(μ1,3-N3)] n (HL1 = 2-[(2-morpholin-4-ylethylimino)methyl]phenol, HL2 = 2-methoxy-6-[(2-piperidin-1-ylethylimino)methyl]phenol), have been synthesized and characterized by physico-chemical and spectroscopic methods. The Cu atom in each of the complexes is five-coordinate in a square pyramidal geometry, with one O and two N atoms of a Schiff base ligand and one terminal N atom of a bridging azido ligand defining the base-plane, and with another terminal N atom of a symmetry-related azido ligand occupying the apical position. The molecules are linked through end-to-end azido bridges, forming one-dimensional polymeric chains. Both of the complexes show moderate inhibitory activities against jack bean urease.  相似文献   

13.
Four new mononuclear complexes, [Ni(L1)(NCS)2] (1), [Ni(L2)(NCS)2] (2), [Co(L1)(N3)2]ClO4 (3), and [Co(L2)(N3)2]ClO4 (4), where L1 and L2 are N,N′-bis[(pyridin-2-yl)methylidene]butane-1,4-diamine and N,N′-bis[(pyridin-2-yl)benzylidene]butane-1,4-diamine, respectively, have been prepared. The syntheses have been achieved by reaction of the respective metal perchlorate with the tetradentate Schiff bases, L1 and L2, in presence of thiocyanate (for 1 and 2) or azide (for 3 and 4). The complexes have been characterized by microanalytical, spectroscopic, single crystal X-ray diffraction and other physicochemical studies. Structural studies reveal that 14 are distorted octahedral geometries. The antibacterial activity of all the complexes and their constituent Schiff bases have been tested against Gram-positive and Gram-negative bacteria.  相似文献   

14.
Two copper(I) complexes [Cu(Cin2bda)2]ClO4 (I) and [Cu(Ncin2bda)2]ClO4 (II) have been prepared by the reaction of the ligands N2,N2′-bis(3-phenylallylidene)biphenyl-2,2′-diamine (L1) and N2,N2′-bis[3-(2-nitrophenyl)allylidene]biphenyl-2,2′-diamine (L2) and copper(I) salt. These compounds were characterized by CHN analyses, 1H NMR, IR, and UV-Vis spectroscopy. The C=N stretching frequency in the copper(I) complexes shows a shift to a lower frequency relative to the free ligand due to the coordination of the nitrogen atoms. The crystal and molecular structure of II was determined by X-ray single-crystal crystallography. The coordination polyhedron about the copper(I) center in the complex is best described as a distorted tetrahedron. A quasireversible redox behavior was observed for complexes I and II. The article is published in the original.  相似文献   

15.
We have reported herein the synthesis of three new Cu(II) complexes of tri- and tetradentate Schiff base ligands containing N3 or N4 donor set along with terminal NNN or SCN ligands: [L1Cu(NCS)]ClO4 (1), [L2Cu(NCS)2] (2) and [L3Cu(NNN)]ClO4 (3) [L1 = NC5H4C(CH3)=N(CH2)3N=C(CH3)C5H4N, L2= Me2N–(CH2)3–N=C(CH3)C5H4N and L3 = NC5H4CH=N–(CH2)4–N=CHC5H4N]. The complexes have been systematically characterised by elemental, spectroscopic and electrochemical techniques. Antimicrobial activities of the Schiff base ligands and their metal complexes have been studied using the disc diffusion method on the strains of Candida tropicalis and Bacillus megaterium. Structures of all the complexes have been unequivocally established from single crystal X-ray diffraction analyses that show the monomeric units containing a five-coordinated copper center in highly distorted square pyramidal geometry with thiocyanate or azide anion coordinated as terminal ligand. The complexes 1 and 3 crystallise in monoclinic (P21/c) and 2 in triclinic (P-1) space group, respectively.  相似文献   

16.
A new chromium(III)–Schiff base complex, [Cr(5-chlorosalprn)(H2O)2]ClO4, where salprn = N,N-propylenebis(salicylideneimine) has been prepared and characterized by electrospray ionization mass spectrometric (ESIMS) analysis and other spectroscopic techniques. Single crystal X-ray data reveal that the complex assumes a trans-diaquo structure, [Cr(C17H18Cl2N2O4)]ClO4 · H2O. The effect of phenyl ring substituents on the rate of formation of [O=CrV Schiff base]+ has been investigated. The bimolecular rate constant for the formation of O=CrV species by the [Cr(Schiff base)(H2O)2]ClO4, where the Schiff base = salprn, (1) and 5-chlorosalprn, (2) with PhOI was compared. In the case of (2) the rate was found to be faster by an order of magnitude at pH = 4 compared to (1). The introduction of a chloro-substituent on the phenyl ring not only influences the rate of redox reactivity but also the pKa values of aquo ligands of the complexes, indicating the difference in the electronic environment around the metal ion in both (1) and (2).  相似文献   

17.
A new binuclear copper(II) complex, [Cu21,1-N3)2(PP)2)] ? 2ClO4 (PP = 2,6-dipyrazol-1-yl-pyridine), was synthesized with double azide as asymmetric end-on bridge ligand and 2,6-dipyrazol-1-yl-pyridine as the terminal ligand. The crystal structure was determined by X-ray crystallography. Cu(II) is located in a distorted square pyramidal geometry, and azide bridges the equatorial-axial linking two Cu(II) atoms with a separation of 3.3595(11) Å. The fitting for the data of the variable-temperature (2–300 K) magnetic susceptibilities by using the Curie–Weiss law gives the Weiss temperature θ = ?7.830 K, indicating a very weak anti-ferromagnetic interaction between the bridging Cu(II) complexes.  相似文献   

18.
A binuclear copper(II) complex, [Cu2(μ 1,3-N3)(N3)(pmp)2(ClO4)]ClO4 (pmp = 2-((pyridin-2-yl) methoxy)-1,10-phenanthroline), was synthesized with a single azide as end-to-end bridge ligand, and pmp and perchlorate as ligands. In the crystal, Cu(II) is in a distorted square pyramidal geometry, and a single azide bridges equatorial-axial linking two Cu(II) ions with separation of 5.851 Å. There are π?π stacking interactions involving 1,10-phenanthroline rings. The variable-temperature (2–300 K) magnetic susceptibilities were analyzed using a binuclear Cu(II) magnetic formula and it indicates that there is a very weak ferromagnetic coupling with 2J = 2.82 cm?1.  相似文献   

19.
New complexes [NiII(pbpaen)](ClO4)2 (1) and [CoIII(pbpaen)](ClO4)3 (2) (pbpaen = N′-(pyridin-2-ylmethyl)-N,N-bis {2-[(pyridin-2-ylmethyl)amino]ethyl}ethane-1,2-diamine) have been synthesized and characterized by IR and UV–Vis spectroscopies. An X-ray structure of the nickel(II) complex shows that [Ni(pbpaen)](ClO4)2 (1) crystallizes in the monoclinic space group P21/c. The cation [Ni(pbpaen)]2+ is pseudo-octahedral with one of the three pyridyl nitrogen atom uncoordinated. The crystal lattice of this complex is stabilized by intra and intermolecular hydrogen bonding systems, giving one-dimensional sheets like arrays. All attempts to obtain nickel or cobalt complexes with protonated forms of the ligand resulted in isolation of only [CoIII(bpaen)](ClO4)3 (3) compound in which the tripod pbpaen ligand has lost one of the three pyridylmethyl groups, procuring then bpaen ligand {bpaen = N,N-bis{2-[(pyridin-2-ylmethyl)amino]ethyl}ethane-1,2-diamine}. The X-ray crystal structure reveals that the compound 3 crystallizes in the orthorhombic space group Pna2 with the Co3+ ion having a distorted-octahedral environment. These two ligands with strong-field N donor stabilise the +3 oxidation state of the Co center.  相似文献   

20.
Condensation of N-(2-vinyloxyethyl)ethane-1,2-diamine with aromatic aldehydes gave mixtures of 2-aryl-1-(2-vinyloxyethyl)imidazolidines and N-arylmethylidene-N′-(2-vinyloxyethyl)ethane-1,2-diamines in an overall yield of 79–84%, while analogous condensation with cyclic and acyclic ketones resulted in the formation of only the corresponding Schiff bases (yield 53–83%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号