首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The adsorption isotherms of selected compounds are our main source of information on the mechanisms of adsorption processes. Thus, the selection of the methods used to determine adsorption isotherm data and to evaluate the errors made is critical. Three chromatographic methods were evaluated, frontal analysis (FA), frontal analysis by characteristic point (FACP), and the pulse or perturbation method (PM), and their accuracies were compared. Using the equilibrium-dispersive (ED) model of chromatography, breakthrough curves of single components were generated corresponding to three different adsorption isotherm models: the Langmuir, the bi-Langmuir, and the Moreau isotherms. For each breakthrough curve, the best conventional procedures of each method (FA, FACP, PM) were used to calculate the corresponding data point, using typical values of the parameters of each isotherm model, for four different values of the column efficiency (N=500N=500, 1000, 2000, and 10,000). Then, the data points were fitted to each isotherm model and the corresponding isotherm parameters were compared to those of the initial isotherm model. When isotherm data are derived with a chromatographic method, they may suffer from two types of errors: (1) the errors made in deriving the experimental data points from the chromatographic records; (2) the errors made in selecting an incorrect isotherm model and fitting to it the experimental data. Both errors decrease significantly with increasing column efficiency with FA and FACP, but not with PM.  相似文献   

2.
3.
4.
Single-component adsorption isotherm data were acquired by frontal analysis (FA) for phenol and caffeine on a new C18-Chromolith column (Merck, Darmstadt, Germany), using a water-rich mobile phase (methanol/water, 15/85, v/v). These data were modeled for best agreement between the experimental data points and the adsorption isotherm model. The adsorption-energy distributions, based on the expectation-maximization (EM) procedure, were also derived and used for the selection of the best isotherm model. The adsorption energy distributions (AEDs) for phenol and caffeine converged toward a trimodal and a quadrimodal distribution, respectively. Energy distributions with more than two modes had not been reported before for the adsorption of these compounds on packed columns. The third high energy mode observed for both phenol and caffeine seems to be specific of the surface of the monolithic column while the first and second low energy modes have the same physical origin as the two modes detected on packed columns. These results suggest significant differences between the structures of the porous silica in these different materials.  相似文献   

5.
Single-component adsorption-isotherm data were acquired by frontal analysis (FA) for six low-molecular-mass compounds (phenol, aniline, caffeine, theophylline, ethylbenzene and propranolol) on one Kromasil-C18 column, using water-methanol solutions (between 70:30 and 20:80, v/v) as the mobile phase. Propranolol data were also acquired using an acetate buffer (0.2 M) instead of water. The data were modeled for best agreement between calculated and experimental overloaded band profiles. The adsorption energy distribution was also derived and used for the selection of the best isotherm model. Widely different isotherm models were found to model best the data obtained for these compounds, convex upward (i.e. Langmuirian), convex downward (i.e. anti-Langmuirian), and S-shaped isotherms. Using the same sample size for all columns (loading factor, Lf approximately 10%), overloaded band profiles were recorded on four different columns packed with the same batch of Kromasil-C18 and five other columns packed with different batches of Kromasil-C18. These experimental band profiles were compared to the profile calculated from the isotherm measured by FA on the first column. The repeatability as well as the column-to-column and the batch-to-batch reproducibilities of the band profiles are better than 4%.  相似文献   

6.
The retention mechanisms of n-propylbenzoate, 4-t ert-butylphenol, and caffeine on the endcapped Symmetry-C(18) and the non-endcapped Resolve-C(18) are compared. The adsorption isotherms were measured by frontal analysis (FA), using as the mobile phase mixtures of methanol or acetonitrile and water of various compositions. The isotherm data were modeled and the adsorption energy distributions calculated. The surface heterogeneity increases faster with decreasing methanol concentration on the non-endcapped than on the endcapped adsorbent. For instance, for methanol concentrations exceeding 30% (v/v), the adsorption of caffeine is accounted for by assuming three and two different types of adsorption sites on Resolve-C(18) and Symmetry-C(18), respectively. This is explained by the effect of the mobile phase composition on the structure of the C(18)-bonded layer. The bare surface of bonded silica appears more accessible to solute molecules at high water contents in the mobile phase. On the other hand, replacing methanol by a stronger organic modifier like acetonitrile dampens the differences between non-endcapped and endcapped stationary phase and decreases the degree of surface heterogeneity of the adsorbent. For instance, at acetonitrile concentrations exceeding 20%, the surface appears nearly homogeneous for the adsorption of caffeine.  相似文献   

7.
The single-component adsorption isotherms of the C60 (from 0 to 15 g/L) and C70 (from 0 to 8 g/L) buckminsterfullerenes on a tetraphenylporphyrin-bonded silica were acquired by frontal analysis, using a solution of toluene-1-methylnaphthalene (40:60, v/v) as the mobile phase. The best isotherm model derived from the fitting of these adsorption data was the bi-Langmuir model, a choice supported by the bimodal affinity energy distribution (AED) obtained for C60. The isotherm parameters derived from the inverse method (IM) of isotherm determination (by fitting calculated profiles to experimental overloaded band profiles of C60 and C70) are in very good agreement with those derived from the FA data. According to the isotherm parameters found by these three methods (FA, AED, IM), the tetraphenylporphyrin-bonded silica can adsorb 54 and 42 mmol/L of C60 and C70 fullerenes, respectively, a result that is consistent with the relative molecular size of these two compounds. The 20% lower surface accessibility for C70 is compensated by a three times higher equilibrium constant on the low-energy sites, giving a selectivity alpha(C70/C60) = 3.6. Large volumes (0.2, 0.8 and 1.7 mL) of mixtures of C60 (3.2 g/L) and C70 (1.3 g/L) were injected and their elution profiles compared to those calculated from the competitive bi-Langmuir model derived from the single-component isotherm data. A good agreement is obtained between calculated and experimental profiles, which supports the two-site adsorption mechanism derived from the single-component adsorption data. The measurements of the influence of the pressure on the retention of C60 and C70 demonstrate that the partial molar volumes of the two buckminsterfullerenes are 12 mL/mol larger in the stationary than in the mobile phase.  相似文献   

8.
The adsorption isotherm was determined for phenol in methanol/water on a C-8 stationary phase using frontal analysis in staircase mode, assuming different total column porosities, from 1 to 87%. Each set of adsorption isotherm data, with a certain column porosity, was fitted to various adsorption models and the generated parameters were used to calculate overloaded elution band profiles that were compared with experiments. It was found that the bi-Langmuir model had an optimum fit for a porosity that corresponds well with the value found experimentally. The adsorption energy distribution (AED) calculations and error analysis confirmed a bimodal energy distribution. It was also found that band profiles can be accurately predicted with a quite arbitrary chosen porosity, under prerequisite that a wrong but flexible adsorption model is chosen instead of the correct one. The latter result is very useful for quick optimizations of preparative separations where the exact value of the column porosity is not available.  相似文献   

9.
Inverse liquid chromatography (ILC) has been used to determine experimental isotherms for the equilibrium adsorption of cyclohexanone onto a silica (61.8 m(2)/g) from hexane using the peak maximum (PM), elution by characteristic point (ECP), frontal analysis (FA), and frontal analysis by characteristic point (FACP) methods. Isotherms obtained using these four approaches gave good internal agreement, as well as being in good agreement with classically determined isotherms. Columns were successfully packed using a dry powder packing method with 9 microm diameter silica particles, and excellent intercolumn and instrument to instrument reproducibility was obtained for PM isotherms. The theoretical background to the PM, ECP, FA, and FACP methods, as well as the practical facets of isotherm determination using these methods, is outlined in this work.  相似文献   

10.
Adsorption isotherm data of phenol from an aqueous solution of methanol onto a C18-bonded silica (Symmetry-C18) were acquired by frontal analysis (FA) at six different temperatures, in a wide concentration range. The non-linear fitting of these data provided the bi-Langmuir model as best isotherm model, a conclusion further supported by the results of the calculation of the affinity energy distribution (AED). The isotherm parameters were obtained using several methods, the fitting of FA isotherm data, the calculation of the AED, and the inverse method, that uses overloaded elution band profiles. The different values obtained are in close agreement. They allow a quantitative investigation of the separate properties of the low- and the high-energy sites on the adsorbent surface. Increasing the temperature decreases the saturation capacity of the low-energy adsorption sites and the adsorption constant of the high-energy sites. In contrast, increasing the temperature does not cause any significant changes in either the saturation capacity of the high-energy sites or the adsorption constant of the low-energy sites.  相似文献   

11.
Besides the accuracy and the precision of the measurements of the data points, several important parameters affect the accuracy of the adsorption isotherms that are derived from the data acquired by frontal analysis (FA). The influence of these parameters is discussed. First, the effects of the width of the concentration range within which the adsorption data are measured and of the distribution of the data points in this range are investigated. Systematic elimination of parts of the data points before the calculation of the nonlinear regression of the data to the model illustrates the importance of the numbers of data points (1) within the linear range and (2) at high concentrations. The influence of the inaccuracy of the estimate of the column hold-up volume on each adsorption data point, on the selection of the isotherm model, and on the best estimates of the adsorption isotherm parameters is also stressed. Depending on the method used to measure it, the hold-up time can vary by more than 10%. The high concentration part of the adsorption isotherm is particularly sensitive to errors made on t(0,exp) and as a result, when the isotherm follows bi-Langmuir isotherm behavior, the equilibrium constant of the low-energy sites may change by a factor 2. This study shows that the agreement between calculated and experimental overloaded band profiles is a necessary condition to validate the choice of an adsorption model and the calculation of its numerical parameters but that this condition is not sufficient.  相似文献   

12.
A new equation of competitive isotherms was derived in the framework of the ideal adsorbed solution (IAS) that predicts multisolute adsorption isotherms from single-solute isotherms. The IAS theory makes this new isotherm thermodynamically consistent, whatever the saturation capacities of these single-component isotherms. On a Kromasil-C(18) column, with methanol-water (80/20 v/v) as the mobile phase, the best single-solute adsorption isotherm of both toluene and ethylbenzene is the liquid-solid extended multilayer BET isotherm. Despite a significant difference between the monolayer capacities of toluene (370 g/l) and ethylbenzene (170 g/l), the experimental adsorption data fit very well to single-component isotherms exhibiting the same capacities (200 g/l). The new competitive model was used for the modeling of the elution band profiles of mixtures of the two compounds. Excellent agreement between experimental and calculated profiles was observed, suggesting that the behavior of the toluene-ethylbenzene adsorbed phase on the stationary phase is close to ideal. For example, the concentrations measured for the intermediate plateau obtained in frontal analysis differ by less than 2% from those predicted by the IAS model.  相似文献   

13.
Single-component adsorption isotherm data were acquired by frontal analysis (FA) for six low molecular weight compounds (phenol, aniline, caffeine, o-toluidine, p-toluidine and propylbenzoate) on one Chromolith-C18 column (#30, Merck, Darmstadt, Germany), using different methanol:water solutions (composition between 60/40 and 15/85 v/v, depending on the solute) as the mobile phase. These data were modeled for best agreement between the experimental data points and the adsorption isotherm model. The adsorption-energy distributions were also derived and used for the selection of the best isotherm model. Widely different models were obtained for these six compounds, four being convex upward (i.e., Langmuirian) and two having at least one inflection point. Overloaded band profiles corresponding to two different sample sizes (a low and a high loading factor) were recorded on six monolithic columns (#30-35) belonging to the same manufactured lot. These experimental band profiles were compared to the profiles calculated from the isotherm measured by FA on the first column, using the equilibrium-dispersive (ED) model of chromatography. For four of the six columns (#30, #32, #33, and #35), the reproducibility was better than 5 and 2.5% for the low and the high concentration profiles, respectively. On the other two columns (#31 and #34), the bands showed significant and systematic retention time shifts for all six compounds (with nearly identical band shapes), the relative adsorption being between 6 and 15% stronger on column #31 or between 2 and 7% lower on column #34. These differences seem to be correlated with the differences in the total porosities of these columns, which differ by 3% from columns #31 to #34, the higher porosity column giving the stronger adsorption.  相似文献   

14.
Single-component adsorption isotherm data of l-tryptophan on a C18-bonded silica column were acquired by frontal analysis (FA), with aqueous mobile phases containing 2.5, 5, and 7.5% of acetonitrile (ACN) or 7, 10, 15, and 20% of methanol (MeOH). Most of these isotherms have two inflection points and three different parts. The low and the high concentration parts exhibit langmuirian behavior. The intermediate part exhibits anti-langmuirian behavior. The inflection points shift toward higher concentrations with increasing mobile phase concentration in ACN or MeOH, which causes the differences in the isotherm profiles. The nature of the organic modifier and its concentration affect only the isotherm profile and the numerical values of its parameters, not the nature of the best model, which is the bi-Moreau model in all cases. The isotherm profiles depend on the experimental conditions because they affect the intensity of the adsorbate-adsorbate interactions. Overloaded band profiles of tryptophan were recorded with the seven mobile phase compositions. They were used to determine the best values of the isotherm coefficients by the inverse method (IM) of chromatography. There is an excellent agreement between the values of these parameters obtained by FA and by IM. Increasing the concentration of either ACN or MeOH in the mobile phase causes a slight decrease in the saturation capacities of the low and the high energy sites, and in the adsorption constant of the low energy sites. The adsorption constant of the high energy sites increases with increasing concentration of either solvent or is little affected. The adsorbate-adsorbate interaction constants of both low and high energy sites increase for both solvents. Saturation capacities of the high energy sites are higher for ACN than for MeOH.  相似文献   

15.
合成了一种新型奎宁-冠醚组合型手性固定相(QN-CR CSP)并用于氨基酸手性对映体的直接拆分,该固定相对12种氨基酸对映体有良好的手性拆分能力。基于氨基酸手性识别中离子交换和络合的协同作用,建立了一种新型的等温吸附模型。通过迎头特殊点洗脱法(FACP)测定色氨酸(Trp)在不同金属离子添加剂条件下的等温吸附线,验证了模型的合理性。流动相中的Li+、Na+、K+等金属离子与氨基酸竞争固定相中的冠醚络合位点,随着金属离子与冠醚的络合作用力和络合吸附平衡常数增大,固定相对Trp的手性拆分能力下降。该模型的建立对理解氨基酸在此类固定相中的手性保留行为以及固定相结构的进一步优化具有重要意义。  相似文献   

16.
High-performance frontal affinity chromatography was employed to study the adsorption-desorption kinetics characterizing the retention of beta-lactoglobulin (beta-LG) onto polyclonal anti-beta-lactoglobulin (anti-beta-LG) chromatographic supports. The adsorption and desorption processes were studied by analyzing two different elution fronts separated by a relatively long rinsing step. The method consists in performing two successive frontal injections of the protein. In between, the column was rinsed with a given volume of mobile phase (buffer alone). During this rinsing stage, a partial desorption may occur and a novel amount of protein could be adsorbed in the second frontal injection step. The whole process (first adsorption, possible desorption, and second adsorption) was simulated by a numerical procedure, in which the column was divided into a large number of slices. A model based on bi-Langmuir type kinetics was used to describe the adsorption of the protein on the support. The model assumes a non-uniform adsorbent with two types of binding sites. At equilibrium the adsorption isotherm is of the bi-Langmuir type. A global adsorption effect was considered which includes the effective binding process and the mass transfer resistances due to the transport to the binding site. Therefore, the column capacity and the kinetic parameters of the model (apparent adsorption and desorption rate constants) were determined from the best fit of the first and second adsorption fronts to the experimental ones. The other parameters of the model are the saturation capacities for the adsorption on each type of sites. The equilibrium affinity constants were estimated in a single experiment from the ratio of the apparent adsorption and desorption rate constants. The high values found (around 10(8) M(-1)) reveal a strong interaction of beta-LG with the immunoadsorbent. Kinetic measurements were carried out at different flow rates. Both the apparent adsorption and desorption kinetics were faster at larger flow rates, indicating an important contribution of the mass transfer resistance in the stagnant fluid at the particle boundary. However, as expected, close values were found for the resulting equilibrium constants calculated from the ratio of the apparent adsorption and desorption rate constant determined at various flow rates.  相似文献   

17.
The thermodynamic interactions of two polymers, one Fmoc-L-Trp-imprinted (MIP), the other one an unimprinted reference (NIP), with the two Fmoc-tryptophan enantiomers were studied by frontal analysis, which allows accurate measurements of the adsorption isotherms. These isotherms were acquired at temperatures of 40, 50, 60, and 70 degrees C, for sample concentrations ranging between 0.005 and 40 mM. The mobile phase used was acetonitrile with one percent acetic acid as an organic modifier. Within the measured concentration ranges, the tri-Langmuir isotherm model accounts best for the isotherm data of both enantiomers on the MIP, the bi-Langmuir model for the isotherm data of Fmoc-L-Trp on the NIP. These isotherm models were selected using three independent processes: statistical tests on the results from regression of the isotherm data to different isotherm models; calculation of the affinity energy distribution from the raw isotherm data; comparison of the experimental and the calculated band profiles. The isotherm parameters obtained from these best selected isotherm models showed that the enantiomeric selectivity does not change significantly with temperature, while the affinity of the substrates for both the MIP and the NIP decrease considerably with increasing temperatures. These temperature effects on the binding performance of the MIP were clarified by considering the thermodynamic functions (i.e., the standard molar Gibbs free energy, the standard molar entropy of adsorption, and the standard molar enthalpy of adsorption) for each identified type of adsorption sites, derived from the Van't Hoff equation. This showed that the entropy of transfer of Fmoc-L-Trp from the mobile to the MIP stationary phase is the dominant driving force for the selective adsorption of Fmoc-L-Trp onto the enantioselective binding sites. This entropy does not change significantly with increasing temperatures from 40 to 70 degrees C.  相似文献   

18.
The influence of the salt concentration (potassium chloride) on the retention and overloading behavior of the propranolol cation (R'-NH2+ -R) on an XTerra-C18 column, in a methanol:water solution, was investigated. The adsorption isotherm data were first determined by frontal analysis (FA) for a mobile phase without salt (25% methanol, v/v). It was shown that the adsorption energy distribution calculated from these raw adsorption data is bimodal and that the isotherm model that best accounts for these data is the bi-Moreau model. Assuming that the addition of a salt into the mobile phase changes the numerical values of the parameters of the isotherm model, not its mathematical form, we used the inverse method (IM) of chromatography to determine the isotherm with seven salt concentrations in the mobile phase (40% methanol, v/v; 0, 0.002, 0.005, 0.01, 0.05, 0.1 and 0.2 M). The saturation capacities of the model increase, q(s,1) by a factor two and q(s,2) by a factor four, with increasing salt concentration in the range studied while the adsorption constant b1 increases four times and b2 decreases four times. Adsorbate-adsorbate interactions vanish in the presence of salt, consistent with results obtained previously on a C18-Kromasil column. Finally, besides the ionic strength of the solution, the size, valence, and nature of the salt ions affect the thermodynamic as well as the mass transfer kinetics of the adsorption mechanism of propranolol on the XTerra column.  相似文献   

19.
Single-component adsorption isotherm data were acquired by frontal analysis (FA) for tryptophan on a C(18)-Kromasil packed column, using acetonitrile-water solutions of various compositions (2.5, 5, and 7.5% ACN+1% acetic acid) and at five different temperatures between 25 and 65 degrees C. The adsorption isotherm model accounting best for these data is the bi-Moreau model, showing that two types of adsorption sites coexist on the surface and that strong adsorbate-adsorbate interactions take place. Large concentration band profiles of tryptophan were obtained for the three mobile phase compositions, at five different temperatures and the best values of the adsorption isotherm coefficients were determined by the inverse method (IM) of chromatography. The advantages and drawbacks of using the FA and the IM for determining the coefficients of the adsorption isotherm of tryptophan under the experimental conditions selected are discussed. The results of the FA and IM measurements are in good agreement. Both indicate that the retention time of tryptophan decreases rapidly with increasing acetonitrile concentration in the mobile phase as well as the saturation capacities of the two types of adsorption sites, with the highest values of the two saturation capacities being found for the lowest ACN content and the lowest temperature. The adsorption constant on the low-energy sites decreases with increasing acetonitrile content and temperature. In contrast, the adsorption constant on the high-energy sites increases with increasing ACN content of the mobile phase but decreases with increasing temperature. The solute-solute interaction parameters for the low and the high-energy adsorption sites increase rapidly with increasing ACN concentration in the mobile phase and with increasing temperature.  相似文献   

20.
The adsorption isotherms of (−)- and (+)-methyl mandelate from a hexane-isopropanol (90:10) solution were measured on a chromatographic column packed with 4-methylcellulose tribenzoate coated on silica. These isotherms are accounted for by a bi-Langmuir isotherm model, the two Langmuir terms having widely different initial slopes and saturation capacities, but each term having the same saturation capacity for the two enantiomers. The competitive isotherms were also measured. They are in excellent agreement with the prediction of a competitive bi-Langmuir model based on the single-component isotherms. The individual band profiles are in agreement with the profiles calculated from these isotherms. Thus, a simplified competitive isotherm can be used to model a separation on a chiral stationary phase the recognition mechanism of which is not well identified and the adsorption behavior of which is certainly not ideal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号