首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rate coefficients of thermal decomposition of peroxyacetic nitric anhydride (PAN) and peroxymethacrylic nitric anhydride (MPAN) were measured over the temperature range 302–323 K. The resulting Arrhenius expressions were k = 1017.4±0.4 exp(?28.5 ± 0.5/RT) for PAN, and k = 1016.2±0.7 exp(?26.8 ± 1.0/RT) for MPAN, where the activation energy is in Kcal/mol. These results are in good agreement with previous studies of PAN and other PAN-type compounds, and imply that energies of RC(O)OO? NO2 bonds are relatively independent of the nature of R.  相似文献   

2.
Absolute rate constants are measured for the reactions: OH + CH2O, over the temperature range 296–576 K and for OH + 1,3,5-trioxane over the range 292–597 K. The technique employed is laser photolysis of H2O2 or HNO3 to produce OH, and laser-induced fluorescence to directly monitor the relative OH concentration. The results fit the following Arrhenius equations: k (CH2O) = (1.66 ± 0.20) × 10?11 exp[?(170 ± 80)/RT] cm3 s?1 and k(1,3,5-trioxane) = (1.36 ± 0.20) × 10?11 exp[?(460 ± 100)/RT] cm3 s?1. The transition-state theory is employed to model the OH + CH2O reaction and extrapolate into the combustion regime. The calculated result covering 300 to 2500 K can be represented by the equation: k(CH2O) = 1.2 × 10?18 T2.46 exp(970/RT) cm3 s?1. An estimate of 91 ± 2 kcal/mol is obtained for the first C? H bond in 1,3,5-trioxane by using a correlation of C? H bond strength with measured activation energies.  相似文献   

3.
The thermal decomposition of propane was studied behind reflected shock waves over the temperature range 1100–1450 K and the pressure range 1.5–2.6 atm, by both monitoring the time variations of absorption at 3.39 μm and analyzing the concentrations of the reacted gas mixtures. The rate constants of the elementary reactions were discussed from the results. The rate constant expressions, k1 = 1.1 × 1016 exp (?84 kcal/RT) s?1 and k4 = 9.3 × 1013 exp(?8 kcal/RT) cm3 mol?1 s?1, of reactions C3H8 → CH3 + C2H5 and C3H8 + H → n-C3H7 + H2 were evaluated, respectively.  相似文献   

4.
The reaction chemistry of C2N2? Ar and C2N2? NO? Ar mixtures has been investigated behind incident shock waves. Progress of the reaction was monitored by observing the cyano radical (CN) in absorption at 388.3 nm. A quantitative spectroscopic model was used to determine concentration histories of CN. From initial slopes of CN concentration during cyanogen pyrolysis, the rate constant for C2N2 + M → 2CN + M (1) was determined to be k1 = (4.11 ± 1.8) × 1016 exp(?47,070 ± 1400/T) cm3/mol · s. A reaction sequence for the C2N2? NO system was developed, and CN profiles were computed. By comparison with experimental CN profiles the rate constant for the reaction CN + NO → NCO + N (3) was determined to be k3 = 10(14.0 ± 0.3) exp(?21,190 ± 1500/T) cm3/mol · s. In addition, the rate of the four-centered reaction CN + NO → N2 + CO (2) was estimated to be approximately three orders of magnitude below collision frequency.  相似文献   

5.
Absolute rate coefficients for the reactions of the hydroxyl radical with dimethyl ether (k1) and diethyl ether (k2) were measured over the temperature range 295–442 K. The rate coefficient data, in the units cm3 molecule?1 s?1, were fitted to the Arrhenius equations k1 (T) = (1.04 ± 0.10) × 10?11 exp[?(739 ± 67 cal mol?1)/RT] and k2(T) = (9.13 ± 0.35) × 10?12 exp[+(228 ± 27 kcal mol?1)/RT], respectively, in which the stated error limits are 2σ values. Our results are compared with those of previous studies of hydrogen-atom abstraction from saturated hydrocarbons by OH. Correlations between measured reaction-rate coefficients and C? H bond-dissociation energies are discussed.  相似文献   

6.
The kinetics of the reactions of hydroxy radicals with cyclopropane and cyclobutane has been investigated in the temperature range of 298–492 K with laser flash photolysis/resonance fluorescence technique. The temperature dependence of the rate constants is given by k1 = (1.17 ± 0.15) × 10?16 T3/2 exp[?(1037 ± 87) kcal mol?1/RT] cm3 molecule?1 s1 and k2 = (5.06 ± 0.57) × 10?16 T3/2 exp[?(228 ± 78) kcal mol?1/RT] cm3 molecule?1 s?1 for the reactions OH + cyclopropane → products (1) and OH + cyclobutane → products (2), respectively. Kinetic data available for OH + cycloalkane reactions were analyzed in terms of structure-reactivity correlations involving kinetic and energetic parameters.  相似文献   

7.
1,2-Butadiene diluted with Ar was heated behind reflected shock waves over the temperature and the total density range of 1100–1600 K and 1.36 × 10?5 ? 1.75 × 10?5 mol/cm3. The major products were 1,3-butadiene, 1-butyne, 2-butyne, vinylacetylene, diacetylene, allene, propyne, C2H6, C2H4, CH4, and benzene, which were analyzed by gas chromatography. The UV kinetic absorption spectroscopy at 230 nm showed that 1,2-butadiene rapidly isomerizes to 1,3-butadiene from the initial stage of the reaction above 1200 K. In order to interpret the formation of 1,3-butadiene, 1-butyne, and 2-butyne, it was necessary to include the parallel isomerizations of 1,2-butadiene to these isomers. The present data were successfuly modeled with a 82 reaction mechanism. From the modeling, rate constant expressions were derived for the isomerization 1,2-butadiene = 1,3-butadiene to be k3 = 2.5 × 1013 exp(?63 kcal/RT) s?1 and for the decomposition 1,2-butadiene = C3H3 + CH3 to be k6 = 2.0 × 1015 exp(?75 kcal/RT) s?1, where the activation energies, 63 kcal/mol and 75 kcal/mol, were assumed. These rate constants are only applicable under the present experimental conditions, 1100–1600 K and 1.23–2.30 atm. © 1995 John Wiley & Sons, Inc.  相似文献   

8.
The mechanisms for reactions of H, HO, and Cl with HOClO3, important elementary processes in the early stages of the ammonium perchlorate (AP) combustion reaction, have been investigated at the CCSD(T)/6‐311+G(3df,2p)//PW91PW91/6‐311+G(3df) level of theory. The rate constants for the low‐energy channels have been calculated by statistical theory. For the reaction of H and HOClO3, the main channels are the production of H2 + ClO4 (k1a) and HO + HOClO2 (k1b); k1a and k1b can be represented as 1.07 × 10?17 T1.97 exp(?7484/T) and 6.08 × 10?17T1.96 exp(?7729/T) cm3 molecule?1 s?1, respectively. For the HO + HOClO3 reaction, the main pathway is the H2O + ClO4 (k2a) production process, with the predicted rate constant k2a = 1.24 × 10 ?8 T?2.99 exp(1664/T) for 300–500 K and k2a = 1.27×10?19 T2.12 exp(?1474/T) for 500–3000 K. For the Cl + HOClO3 reaction, the formation of HOCl + ClO3 (k3a) and HCl + ClO4 (k3b) is dominant, with k3a = 1.33×10?12 T0.67 exp(?9658/T) and k3b = 1.75×1016 T1.63 exp(?11156/T) cm3 molecules?1 in the range of 300–3000 K. In addition, the heats of formation of ClO3 and HOClO3 have been predicted based on several isodesmic and/or isogyric reactions with ΔfHo0 (ClO3) = 47.0 ± 1.0 and ΔfHo0 (HOClO3) = 5.5 ± 1.5 kcal/mol, respectively. These data may be used for kinetic simulation of the AP decomposition and combustion reaction. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 253–261, 2010  相似文献   

9.
Reactions of ozone with simple olefins have been studied between 6 and 800 mtorr total pressure in a 220-m3 reactor. Rate constants for the removal of ozone by an excess of olefin in the presence of 150 mtorr oxygen were determined over the temperature range 280 to 360° K by continuous optical absorption measurements at 2537 Å. The technique was tested by measuring the rate constants k1 and k2 of the reactions (1) NO + O3 → NO2 + O2 and (2) NO2 + O3 rarr; NO3 + O2 which are known from the literature. The results for NO, NO2, C2H4, C3H6, 2-butene (mixture of the isomers), 1,3→butadiene, isobutene, and 1,1 -difluoro-ethylene are 1.7 × 10?1 4 (290°K), 3.24 × 10?17 (289°K), 1.2 × 10?1 4 exp (–4.95 ± 0.20/RT), 1.1 × 10?1 4 exp (–3.91 ± 0.20/RT), 0.94 × 10?1 4 exp ( –2.28 ± 0.15/RT), 5.45 ± 10?1 4 exp ( –5.33 ± 0.20/RT), 1.8 ×10?17 (283°K), and 8 × 10?20 cm3/molecule ·s(290°K). Productformation from the ozone–propylene reaction was studied by a mass spectrometric technique. The stoichiometry of the reaction is near unity in the presence of molecular oxygen.  相似文献   

10.
Vinylacetylene was pyrolyzed at 300–450°C in a packed and an unpacked static reactor with a pinhole bleed to a quadrupole mass spectrometer. The reactant and C8H8 products were monitored continuously during a reaction by mass spectrometry. In some runs, the products were also analyzed by gas chromatography after the run. In these runs CH4, C2H6, C3H6, and C2H4 were also detected. The reaction for vinylacetylene removal and C8H8 formation is homogeneous, second order in reactant, and independent of the presence of a large excess of N2 or He. However, C8H8 formation is about half-suppressed by the addition of the free-radical scavengers NO or O2. The rate coefficient for total vinylacetylene removal is 1.7 × 106 exp(?79 ± 13 kJ/mol RT) L/mol · s. The major reaction for C4H4 removal is polymerization. In addition four C8H8 isomers, carbon, and small hydrocarbons are formed. The three major C8H8 isomers are styrene, cyclooctatetraene (COT), and 1,5? dihydropentalene (DHP). The C8H8 compounds are formed by both molecular and free-radical processes in a second-order process with an overall k ? 3 × 108 exp(?122 kJ/mol RT) L/mol · s (average of packed and unpacked cell results). The molecular process occurs with an overall k = 8.5 × 107 exp (?118 kJ/mol RT) L/mol · s. The COT, DHP, and an unidentified isomer (d), are formed exclusively in molecular processes with respective rate coefficients of 4.4 × 104 exp(?77 kJ/mol RT), 1.7 × 105 exp(?89 kJ/mol RT), and 3.1 × 109 exp(? 148 kJ/mol RT) L/mol · s. The styrene is formed both by a direct free-radical process and by isomerization of COT.  相似文献   

11.
The thermal unimolecular decomposition of three vinylethers has been studied in a VLPP apparatus. The high-pressure rate constant for the retro-ene reaction of ethylvinylether was fit by log k (sec?1) = (11.47 + 0.25) - (43.4 ± 1.0)/2.303 RT at <T> = 900 K and that of t - butylvinylether by log k (sec?1) = (12.00 ± 0.27) - (38.4 ± 1.0)/2.303 RT at <T> = 800 K. No evidence for the competition of the higher energy homolytic bond-fission process could be obtained from the experimental data. The rate constant compatible with the C? O bond scission reaction in the case of benzylvinylether was log k (sec?1) = (16.63 ± 0.30) - (53.74 ± 1.0)/2.303 RT at <T> = 750 K. Together with ΔHf,3000(benzyl·) = 47.0 kcal/mol, the activation energy for this reaction results in ΔHf,3000(CH2CHO) = +3.0 ± 2.0 kcal/mol and a corresponding resonance stabilization energy of 3.2 ± 2.0 kcal/mol for 2-ethanalyl radical.  相似文献   

12.
The gas phase, nitric oxide catalyzed positional isomerization of 3-methylene-1,5,5-trimethylcyclohexene (MTC) into 1,3,5,5-tetramethyl-1,3-cyclohexadiene (TECD) has been studied for temperatures ranging between 296° and 425°C. The major reaction was first order with respect to nitric oxide and to MTC. The major side product, mesitylene, usually amounted to less than 10% of the TECD isomer formed. Only at high temperatures and large conversions has up to 20% been observed. Conditioned pyrex or quartz vessels coated with KCl have been used. The nitric oxide catalyzed isomerization is apparently a homogeneous process, as demonstrated by the insensitivity of the observed rate constants towards a 15-fold increase in the surface to volume ratio of the reaction vessels. However, a residual, presumably heterogeneous, thermal isomerization of the starting material could not be eliminated. Good mass balances were obtained for both NO and hydrocarbons. After correcting for the thermally induced conversion the observed rate constants for the nitric oxide catalyzed isomerization yield log k1 (1 mole?1 sec?1) = (10.7 ± 0.2) – (37.3 ± 0.9)/θ where θ is 2.303 × 10?3 RT (kcal mole?1). Plotting log k1 versus the ratio of the starting materials (MTC/NO)0 it was found that for temperatures ≥ 365°C the rate constants were systematically too high. Using extrapolated values for the higher temperature range yields the more reliable corrected Arrhenius equation log k = 8.6 – 31.7/θ. The reaction mechanism is outlined and the implications with respect to the stabilization energy generated in the MTC? radical intermediate and the activation energy of the backreaction MTC? + HNO are discussed. Using for the activation energy E?1 of the backreaction (R? + HNO) a literature value of 9.2 ± 0.9 kcal mole?1 reported for the cyclohexadiene? 1,3? system, this yields 23.4 ± 2 kcal mole?1 for the stabilization energy in the methylenecyclohexenyl radical, which is to be compared with the corresponding values for the allyl (10.2 ± 1.4), methallyl (12.6 ± 1) pentadienyl (15.4 ± 1) and cyclohexadienyl (24.6 ± 0.7) radicals. The pre-exponential factor agrees well with the value of (8.4 ± 0.2) reported by Shaw and co-workers for the similar reaction of NO with 1,3-cyclohexadiene. It is noteworthy that HNO, acting as sole hydrogen donor in the system, is surprisingly stable under the reaction conditions used. Nitrous oxide, HCN, H2O and N2 are observed in the product mixture of experiments carried out to high conversions at higher temperatures.  相似文献   

13.
The kinetics of the gas-phase reaction of Cl atoms with CF3I have been studied relative to the reaction of Cl atoms with CH4 over the temperature range 271–363 K. Using k(Cl + CH4) = 9.6 × 10?12 exp(?2680/RT) cm3 molecule?1 s?1, we derive k(Cl + CF3I) = 6.25 × 10?11 exp(?2970/RT) in which Ea has units of cal mol?1. CF3 radicals are produced from the reaction of Cl with CF3I in a yield which was indistinguishable from 100%. Other relative rate constant ratios measured at 296 K during these experiments were k(Cl + C2F5I)/k(Cl + CF3I) = 11.0 ± 0.6 and k(Cl + C2F5I)/k(Cl + C2H5Cl) = 0.49 ± 0.02. The reaction of CF3 radicals with Cl2 was studied relative to that with O2 at pressures from 4 to 700 torr of N2 diluent. By using the published absolute rate constants for k(CF3 + O2) at 1–10 torr to calibrate the pressure dependence of these relative rate constants, values of the low- and high-pressure limiting rate constants have been determined at 296 K using a Troe expression: k0(CF3 + O2) = (4.8 ± 1.2) × 10?29 cm6 molecule?2 s?1; k(CF3 + O2) = (3.95 ± 0.25) × 10?12 cm3 molecule?1 s?1; Fc = 0.46. The value of the rate constant k(CF3 + Cl2) was determined to be (3.5 ± 0.4) × 10?14 cm3 molecule?1 s?1 at 296 K. The reaction of Cl atoms with CF3I is a convenient way to prepare CF3 radicals for laboratory study. © 1995 John Wiley & Sons, Inc.  相似文献   

14.
The thermal isomerization of the title compounds was studied in the vapor phase. Over the temperature range from 445.1 to 477.5°K, 1,4-dimethylbicyclo[2.2.0]hexane underwent a homogeneous unimolecular reaction to 2,5-dimethyl-1,5-hexadiene, the rate constants being represented by the equation: k = 1.86 × 1011 exp (?31000 ± 1800/RT) sec?1. Over the temperature range from 630.0 to 662.2°K, 1,4-dimethylbicyclo[2.1.1]-hexane also underwent a unimolecular isomerization to the same product, the rate constants being given by the equation: k = 8.91 × 1014 exp (?56000 ± 900/RT) sec?1. The pyrolysis of 1,4-dimethylbicyclo[2.1.0]pentane gave 1,3-dimethylcyclopentene-1 and 2,4-dimethyl-1,4-pentadiene in the ratio of 9:1. The former reaction was influenced by surface effects but the latter was not. The rate constants for the formation of 2,4-dimethyl-1,4-pentadiene fitted the equation: k = 1.66 × 1017 exp (?57400 ± 3100/RT) sec?1. The effect of the two methyl groups at the bridgehead positions in these molecules in influencing the rate of decomposition is discussed in terms of the non-bonded repulsive forces between the substituents.  相似文献   

15.
1-Butyne diluted with Ar was heated behind reflected shock waves over the temperature range of 1100–1600 K and the total density range of 1.36 × 10?5?1.75 × 10?5 mol/cm3. Reaction products were analyzed by gas-chromatography. The progress of the reaction was followed by IR laser kinetic absorption spectroscopy. The products were CH4, C2H2, C2H4, C2H6, allene, propyne, C4H2, vinylacetyiene, 1,2- butadiene, 1,3-butadiene, and benzene. The present data were successfully modeled with a 80 reaction mechanism. 1-Butyne was found to isomerize to 1,2-butadiene. The initial decomposition was dominated by 1-butyne → C3H3 + CH3 under these conditions. Rate constant expressions were derived for the decomposition to be k7 = 3.0 × 1015 exp(?75800 cal/RT) s?1 and for the isomerization to be k4 = 2.5 × 1013 exp(?65000 cal/RT) s?1. The activation energy 75.8 kcal/mol was cited from literature value and the activation energy 65 kcal/mol was assumed. These rate constant expressions are applicable under the present experimental conditions, 1100–1600 K and 1.23–2.30 atm. © 1995 John Wiley & Sons, Inc.  相似文献   

16.
Dissociation rates of SO2 in SO2 + Ar mixtures at 6%, 11%, 15% and 20% of SO2 were measured behind incident shock waves over a temperature range 4000–6000 K at initial pressures 1.0 to 2.5 Torr. The recorded laser schlieren signals exhibited two exponentials, the faster one due to vibrational relaxation and the slower one due to dissociation. The initial dissociation rate was calculated from the value of the density gradient at the point of intersection of the two exponentials. A least-squares analysis of the experimental data yielded the following empirical relations: kSO2Ar = 3.34 × 1015 exp(?107.6 kcal mole?1/RT) cm3/mole s, kSO2SO2 = 5.02 × 1014 exp(?66.6 kcal mole?1 kcal mole?1/RT) cm3/mole s.  相似文献   

17.
The rate of decomposition of tert-amyl nitrite (t-AmONO) has been studied in the absence (120°–155°C) and presence (160°–190°C) of nitric oxide. In the absence of nitric oxide for low concentrations of tert-amyl nitrite (~10?4M) and small extents of reaction (~1%), the first-order homogeneous rates of acetone formation are a direct measure of reaction (1) since k3a ? k2(NO): The rate of acetone formation is unaffected by the addition of large amounts of carbon tetrafluoride or isobutane (~1 atm) but is completely suppressed by large amounts of nitric oxide (1 atm 120°–155°C). The rate of reaction (1) is given by k1 = 1016.3±0.1 10?40.3±0.1/θ sec?1. Since (E1 + RT) and ΔH°1 are identical, both may be equated with D(t-AmO – NO) = 40.9 ± 0.1 kcal/mol and E2 = 0 ± 0.1 kcal/mol. The thermochemistry leads to the result that ΔH°f (t-AmO) = ?26.6 ± 1 kcal/mol. From ΔS°1 and A1, k2 is calculated to be 1010.5±0.2 M?1·sec?1. Although the addition of nitric oxide completely suppresses acetone formation at lower temperatures, it reappears at higher temperatures. This is a result of reaction (3a) now competing with reaction (2), thus allowing k3a to be determined. The rate constant for reaction (3a) is given by k3a = 1014.7 ± 0.2 10?14.3 ± 1/θ sec?1. There are two possible routes for the decomposition of the tert-amyloxyl radical: The dominating process is (3a). From the result at 160°C that k3a/k3b = 80, we arrive at the result k3b = 1015.0–18.7/θ sec?1. In addition to the products accounted for by the radical split (1), methyl-2-but-1-ene and methyl-2-but-2-ene are produced as a result of the six-centre elimination of nitrous acid (5): The ratio k5a/k5b was 0.35. Unlike tert-butyl where the rates of the two paths were comparable [(l) and (5)], here the total rate of the elimination process was only 0.5% that of the radical split (1). The reason for this is not clear.  相似文献   

18.
The rate constant for the reaction NH3 + OH → NH2 + H2O was determined by the comparison of the calculated induction period data with experiments by the shock tube technique in the range 1360–1840 K, for NH3-H2-O2-Ar mixtures. The rate constants can be represented by the expression k = 1012.49±0.04exp[(?1.95±0.15) kcal/,RT] cm3 mol?1 s?1.  相似文献   

19.
The spin-forbidden dissociation reaction of the N2O(X1Σ+) ground state has been investigated by both quantum calculations and experiments. Ab initio prediction at the CCSD(T)/CBS(TQ5)//CCSD(T)/aug-cc-pVTZ+d level of theory gave the crossing point (MSX) energy at 60.1 kcal/mol for the N2O(X1Σ+) → N2() + O(3P) transition, in good agreement with published data. The T- and P-dependent rate coefficients, k1(T,P), for the nonadiabatic thermal dissociation predicted by nonadiabatic Rice-Ramsperger-Kassel-Marcus (RRKM) calculations agree very well with literature data. The rate constants at the high- and low-pressure limits, k1 = 1011.90 exp (−61.54 kcal mol−1/RT) s−1 and k1o = 1014.97 exp(−60.05 kcal mol−1/RT) cm3 mol−1 s−1, for example, agree closely with the extrapolated results of Röhrig et al. at both pressure limits. The second-order rate constant (k1o) is also in excellent agreement with our result measured by FTIR spectrometry in the present study for the temperature range of 860-1023 K as well as with many existing high-temperature data obtained primarily by shock-wave heating up to 3340 K. Kinetic modeling of the NO product yields measured at long reaction times in the present work also allowed us to reliably estimate the rate constant for reaction (3), O + N2O → N2 + O2, based on its strong competition with the NO formation from reaction (2) which has been better established. The modeled values of k3 confirmed the previous finding by Davidson et al. with significantly smaller values of A-factor and activation energy than the accepted ones. A least-squares analysis of both sets of data gave k3 = 1012.22 ± 0.04 exp[− (11.65 ± 0.24 kcal mol−1/RT)] cm3 mol−1 s−1, covering the wide temperature range of 988-3340 K.  相似文献   

20.
The kinetics and mechanism of the reaction between iodine and dimethyl ether (DME) have been studied spectrophotometrically from 515–630°K over the pressure ranges, I2 3.8–18.9 torr and DME 39.6–592 torr in a static system. The rate-determining step is, where k1 is given by log (k1/M?1 sec?1) = 11.5 ± 0.3 – 23.2 ± 0.7/θ, with θ = 2.303RT in kcal/mole. The ratio k2/k?1, is given by log (k2/k?1) = ?0.05 ± 0.19 + (0.9 ± 0.45)/θ, whence the carbon-hydrogen bond dissociation energy, DH° (H? CH2OCH3) = 93.3 ± 1 kcal/mole. From this, ΔH°f(CH2OCH3) = ?2.8 kcal and DH°(CH3? OCH2) = 9.1 kcal/mole. Some nmr and uv spectral features of iodomethyl ether are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号