共查询到20条相似文献,搜索用时 15 毫秒
1.
Britta Lindgreen Viggo Tvergaard Alan Needleman 《International Journal of Solids and Structures》2008,45(2):580-592
The initiation and growth of necks in polymer tubes subjected to rapidly increasing internal pressure is analyzed numerically. Plane strain conditions are assumed to prevail in the axial direction. The polymer is characterized by a finite strain elastic–viscoplastic constitutive relation and the calculations are carried out using a dynamic finite element program. Numerical results for neck development are illustrated and discussed for tubes of various thicknesses. The sensitivity to the wave number of the thickness imperfections is studied with a focus on comparing a long wave length imperfection and a short wave length imperfection. After some thinning down at the necks, the mode of deformation switches to neck propagation along the circumference of the tube. A case is shown in which the necks have propagated along the entire tube wall, so that network locking in the polymer results in high stiffness against further expansion of the tube. The rate dependence of the necking behavior gives noticeable differences in neck development for slow loading versus fast loading. 相似文献
2.
This paper explores the critical and post-bulging bifurcation of a cylindrical dielectric elastomer (DE) tube undergoing finite deformation under electro-mechanical coupling loading. Explicit expressions for the critical conditions of electro-mechanical bifurcation are derived by using a simplified mathematical method. The post-bifurcation path is comprehensively investigated by specifying the material model as ideal dielectric elastomer. In the post-bifurcation analysis, we analytically establish conditions for the phase coexistence of steady propagation and analyze the physical implications. We demonstrate a global instability under force or voltage control and a localized instability under volume or charge control. Cylindrical tube experiments have been carried out under electro-mechanical coupling loading to verify the theoretical predictions. Good agreements on the critical conditions as well as the post-bifurcation path are obtained. This work characterizes the bifurcation mechanism of rubber-like materials under complex coupling loading. 相似文献
3.
《International Journal of Plasticity》1995,11(1):99-118
A rate-independent plasticity theory based on the concept of dual variables and dual derivatives is utilized to describe finite elastic-plastic deformations including kinematic and isotropic hardening effects. Application of this theory to the problem of the thick-walled tube under internal pressure leads to a system of partial differential equations of hyperbolic type. The existence and uniqueness of the solution of the boundary value problem is guaranteed, as well as the convergence of its numerical approximation. The exact solution of this problem is calculated by means of an extrapolation technique. This integration method turns out to be applicable for rather general hardening models of rate-independent plasticity. On the basis of the computed solutions the influence of the hardening parameters is investigated. As finite deformations are of special interest, this investigation is carried out not only for the partially yielded tube but also for the completely plastified tube. Furthermore, the onset of secondary plastic flow during unloading as well as residual stress distributions are studied. 相似文献
4.
5.
The finite element method is used to numerically simulate localized necking in aluminum alloy tube under internal pressure. The measured electron backscatter diffraction (EBSD) data are directly incorporated into the finite element model and the constitutive response at an integration point is described by the single crystal plasticity theory. The tube is assumed sufficiently long, so that length changes as well as the end effects can be ignored and a plane strain analysis can be performed. Localized necking is assumed to be associated with surface instability, the onset of unstable thinning. It is demonstrated that such a surface instability/necking is the natural outcome of the present approach, and an artificial initial imperfection required by other approaches is not necessary in the present analysis. The effects of spatial grain orientation distribution, material strain rate sensitivity, work hardening, and initial surface topography on necking are discussed. It is found that localized necking depends strongly on both the initial texture and its spatial orientation distribution, while the initial surface topography has a negligible effect on necking. 相似文献
6.
Jian Zhu Shengqiang Cai Zhigang Suo 《International Journal of Solids and Structures》2010,47(24):3254-3262
This paper analyzes a membrane of a dielectric elastomer, prestretched and mounted on a rigid circular ring, and then inflated by a combination of pressure and voltage. Equations of motion are derived from a nonlinear field theory, and used to analyze several experimental conditions. When the pressure and voltage are static, the membrane may attain a state of equilibrium, around which the membrane can oscillate. The natural frequencies can be tuned by varying the prestretch, pressure, or voltage. A sinusoidal pressure or voltage may excite superharmonic, harmonic, and subharmonic resonance. Several modes of oscillation predicted by the model have not been reported experimentally, possibly because these modes have small deflections, despite large stretches. 相似文献
7.
8.
9.
Nonlinear Dynamics - An AC voltage induces a nonlinear vibration of dielectric elastomers (DEs), which enables DE to be served as soft dynamical devices and robots. As is known, a special beating... 相似文献
10.
Righi Michele Moretti Giacomo Forehand David Agostini Lorenzo Vertechy Rocco Fontana Marco 《Nonlinear dynamics》2021,105(4):2861-2876
Nonlinear Dynamics - Dielectric elastomer generators (DEGs) are a promising option for the implementation of affordable and reliable sea wave energy converters (WECs), as they show considerable... 相似文献
11.
《International Journal of Plasticity》2005,21(1):101-117
The anisotropic plastic deformation behavior of extruded 5000 series aluminum alloy tubes, A5154-H112, of 76 mm outer diameter and 3.9 mm wall thickness is investigated, using a servo-controlled tension-internal pressure testing machine. This machine is capable of applying arbitrary stress or strain paths to a tubular specimen using an electrical, closed-loop control system. Detailed measurements were made of the initial yield locus, contours of plastic work for different levels of work-hardening, and the directions of the incremental plastic strain vectors for both linear and combined stress paths. It is found that the measured work contours constructed in the principal stress space are similar in shape, and that the directions of the incremental plastic strain vectors remain almost constant at constant stress ratios. The work-hardening behavior predicted using Hosford's or the Yld2000-2d yield functions under the assumption of isotropic hardening agrees closely with the observations for both linear and combined stress paths. The material is thus found to work-harden almost isotropically. Both yield functions are effective phenomenological plasticity models for predicting the anisotropic plastic deformation behavior of the material. 相似文献
12.
The dielectric elastomer (DE) has attracted significant attention due to its desired features, including large deformation, fast response, and high energy density. However, for a DE actuator (DEA) utilizing a snap-through deformation mode, most existing theoretical models fail to predict its deformation path. This paper develops a new finite element method (FEM) based on the three-parameter Gent-Gent model suitable for capturing strain-stiffening behaviors. The simulation results are verified by experiments, indicating that the FEM can accurately characterize the snap-through path of a DE. The method proposed in this paper provides theoretical guidance and inspiration for designing and applying DEs and bistable electroactive actuators. 相似文献
13.
采用辛算法研究了Hamilton体系下介电弹性体圆形薄膜的动力学响应。首先,将该问题引入Hamilton对偶变量体系,借助Legendre变换,给出系统的广义动量和Hamilton函数,通过对Hamilton函数作用量的变分,得到Hamilton体系下的正则方程。其次,对于得到的正则方程给出了辛Runge-Kutta的计算格式。最后,采用二级四阶辛Runge-Kutta算法对动力学系统进行了数值求解,和四级四阶经典Runge-Kutta算法进行对比,结果表明,二级四阶辛Runge-Kutta算法具有保能量以及长时间数值稳定的优势,同时说明四级四阶经典Runge-Kutta算法对于步长依赖的局限性。 相似文献
14.
Actuation devices based on dielectric elastomers, typically exhibit various kinds of instability which may determine a decrease of performances and, eventually, the device failure. In this work we focus on wrinkling instabilities for polymer films subjected to an electric field. The main result is the definition of a domain of taut states in the plane of principal stretches strongly dependent on the applied voltage and on the constitutive properties of the polymer film. We discuss these features, crucial in the perspective of electroactive materials design, through simple boundary value problems for Neo-Hookean and Ogden materials. 相似文献
15.
In this paper, we present a modified model describing the constitutive relation of viscoelastic dielectric elastomer (DE). The uniform uniaxial tension-recovery experiment was carried out at different stretching rates. Based on Yeoh hyper-elastic model, model-fitting approach is put forward to obtain the relationship between parameters of Yeoh model and stretching rate, thus the modified model was obtained. From the approximate relationship between harmonic motion and uniform reciprocating motion, the stress–strain curve in the recovery process was also identified through the hysteresis between stress and strain. The modified model, with concise form and evident physical concept, can describe the strong nonlinear behavior between deformation and mechanical stress of the material in a common stretching rate range (from 0.01s?1 to 0.8s?1 at least). The accuracy and reliability of the modified model was examined. 相似文献
16.
17.
Dielectric elastomer transducers are being developed for applications in stretchable electronics, tunable optics, biomedical devices, and soft machines. These transducers exhibit highly nonlinear electromechanical behavior: a dielectric membrane under voltage can form wrinkles, undergo snap-through instability, and suffer electrical breakdown. We investigate temporal evolution and instability by conducting a large set of experiments under various prestretches and loading rates, and by developing a model that allows viscoelastic instability. We use the model to classify types of instability, and map the experimental observations according to prestretches and loading rates. The model describes the entire set of experimental observations. A new type of instability is discovered, which we call wrinkle-to-wrinkle transition. A flat membrane at a critical voltage forms wrinkles and then, at a second critical voltage, snaps into another state of winkles of a shorter wavelength. This study demonstrates that viscoelasticity is essential to the understanding of temporal evolution and instability of dielectric elastomers. 相似文献
18.
Large-scale failure modes of dielectric elastomer actuators 总被引:1,自引:0,他引:1
Jean-Sbastien Plante Steven Dubowsky 《International Journal of Solids and Structures》2006,43(25-26):7727-7751
Dielectric elastomer actuators (DEAs) show promise for robotic and mechatronic applications. However, to date, these actuators have experienced high rates of failure that have prevented their practical application. Here, large scale modes of failure of DEAs and their performance limits are studied. The objective is to provide design guidelines and bound the performance of DEAs that avoid failure. An idealized DEA is modeled and its failure is predicted as a function of film pre-stretch used during actuator fabrication, actuation voltage, and stretch rate. Three failure modes are considered: pull-in, dielectric strength, and material strength. Each failure mode is shown to dominate for different combinations of pre-stretch and stretch rate. High stretch rates lead to dielectric strength failure while low stretch rates lead to pull-in failure. Material strength failure is less important for most cases. Model predictions are validated experimentally using practical DEAs operating under load. This study suggests that DEAs cannot be operated reliably under load for long periods of time or low stretch rates due to pull-in failure limitations. To be reliable, DEAs must be used for short periods of time with high stretch rates. 相似文献
19.
In this paper, a numerical model for the dynamic response of tubular dielectric elastomer transducers is presented and validated with experimental results for the first time. Dielectric elastomers (DE) are soft polymer based smart materials that can be potentially employed in applications such as actuation, sensing and energy harvesting (Kornbluh, 2004, Carpi et al., 2005, Waki et al., 2008). In our previous work, the quasi-static response of tubular DE transducers was studied (Goulbourne et al., 2007, Son and Goulbourne, 2009). Here, a numerical model is developed to predict the dynamic response of tubular DE transducers. Inertia effects are included in our previous static model which yields a system of partial differential equations. The results of the dynamic response of the tubular DE transducers are obtained by numerically solving the simplified partial different equations using a finite difference scheme. The capacitance change induced by the dynamic deformation of the tubular DE is also calculated by a simple electrostatic model, illustrating dynamic passive sensing.Several tubular DE transducer samples (VHB 4905 and silicone) were fabricated and an experimental setup was developed to investigate the dynamic response by measuring capacitance and radial deformation. In the sensing experiments, a sweep of dynamic pressure profiles (0–5 Hz) are applied. It is observed that silicone transducers have a larger dynamic sensing range. In the actuation experiments, the deformation of the silicone actuator is monitored while a voltage signal (4.5 kV) is applied from 0 to 30 Hz. The silicone actuator shows a good actuation response. The comparison between numerical and experimental results for the DE transducers shows an overall error of 3%. 相似文献