首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Considering the separable phenomena of imbibition in complex fine porous media as a function of timescale, it is noted that there are two discrete imbibition rate regimes when expressed in the Lucas–Washburn (L–W) equation. Commonly, to account for this deviation from the single equivalent hydraulic capillary, experimentalists propose an effective contact angle change. In this work, we consider rather the general term of the Wilhelmy wetting force regarding the wetting line length, and apply a proposed increase in the liquid–solid contact line and wetting force provided by the introduction of surface meso/nanoscale structure to the pore wall roughness. An experimental surface pore wall feature size regarding the rugosity area is determined by means of capillary condensation during nitrogen gas sorption in a ground calcium carbonate tablet compact. On this nano size scale, a fractal structure of pore wall is proposed to characterize for the internal rugosity of the porous medium. Comparative models based on the Lucas–Washburn and Bosanquet inertial absorption equations, respectively, for the short timescale imbibition are constructed by applying the extended wetting line length and wetting force to the equivalent hydraulic capillary observed at the long timescale imbibition. The results comparing the models adopting the fractal structure with experimental imbibition rate suggest that the L–W equation at the short timescale cannot match experiment, but that the inertial plug flow in the Bosanquet equation matches the experimental results very well. If the fractal structure can be supported in nature, then this stresses the role of the inertial term in the initial stage of imbibition. Relaxation to a smooth-walled capillary then takes place over the longer timescale as the surface rugosity wetting is overwhelmed by the pore condensation and film flow of the liquid ahead of the bulk wetting front, and thus to a smooth walled capillary undergoing permeation viscosity-controlled flow.  相似文献   

2.
We present a dynamic model of immiscible two-phase flow in a network representation of a porous medium. The model is based on the governing equations describing two-phase flow in porous media, and can handle both drainage, imbibition, and steady-state displacement. Dynamic wetting layers in corners of the pore space are incorporated, with focus on modeling resistivity measurements on saturated rocks at different capillary numbers. The flow simulations are performed on a realistic network of a sandpack which is perfectly water-wet. Our numerical results show saturation profiles for imbibition in agreement with experiments. For free spontaneous imbibition we find that the imbibition rate follows the Washburn relation, i.e., the water saturation increases proportionally to the square root of time. We also reproduce rate effects in the resistivity index for drainage and imbibition.  相似文献   

3.
The cylindrical model is discussed and a new tube model is proposed to describe capillary imbibition kinetics in porous sedimentary rocks. The tube consists of a periodic succession of a single hollow spherical element of which the geometry is defined by the sphere radius and the sphere access radius. These two parameters are estimated experimentally for four rock types from their specific surface areas. Introducing those parameters in the model capillary imbibition kinetics, parameters are calculated and compared with the experimental ones. A direct relation between imbibition kinetics and specific surface area has been pointed out.  相似文献   

4.
A stochastic approach to network modelling has been used to simulate quasi-static immiscible displacement in porous media. Both number-based and volume-based network saturation results were obtained. Number-based results include: number-based saturation curves for primary drainage, secondary imbibition and secondary drainage, fluid distribution data, and cluster trapping history. Using pore structure data of porous media, it is possible to convert the number-based curves to capillary pressure — saturation relationships. Pore size distribution functions and pore shapes which are thought to closely represent Berea sandstone samples were used to predict the capillary curves. The physical basis of these calculations is a one-to-one correspondence between the cumulative node and bond index fractions in the network analysis, and the cumulative number-based distributions of pore body and pore throat diameters, respectively. The oil-water capillary pressure curve simulated for primary drainage closely resembles those measured experimentally. The agreement between the simulated and the measured secondary imbition and secondary drainage curves is less satisfactory.  相似文献   

5.
In the past decades, there was considerable controversy over the Lucas–Washburn (LW) equation widely applied in capillary imbibition kinetics. Many experimental results showed that the time exponent of the LW equation is less than 0.5. Based on the tortuous capillary model and fractal geometry, the effect of tortuosity on the capillary imbibition in wetting porous media is discussed in this article. The average height growth of wetting liquid in porous media driven by capillary force following the [`(L)] s(t) ~ t1/2DT{\overline L _{\rm {s}}(t)\sim t^{1/{2D_{\rm {T}}}}} law is obtained (here D T is the fractal dimension for tortuosity, which represents the heterogeneity of flow in porous media). The LW law turns out to be the special case when the straight capillary tube (D T = 1) is assumed. The predictions by the present model for the time exponent for capillary imbibition in porous media are compared with available experimental data, and the present model can reproduce approximately the global trend of variation of the time exponent with porosity changing.  相似文献   

6.
The kinetics of capillary imbibition in ordinary Portland cement pastes has been studied experimentally and theoretically. Nuclear magnetic resonance stray field imaging (STRAFI) has been used to record water concentration profiles for various ingress times. The profiles follow a t law and thus a master curve can be formed using the Boltzmann transformation. The distribution of pore sizes within the sample as measured by NMR cryoporometry shows a prominent peak at 100Å. A computer model of the pore structure was developed consisting of a lattice of interconnecting pores with a size distribution consistent with the cryoporometry results. The Hagen–Poiseuille law was used to describe the kinetics of the water in this pore structure. The best agreement between the computer simulations and the experimental master curve was obtained by using a narrower range of pore sizes than indicated by the cryoporometry results.  相似文献   

7.
Hysteresis in the saturation versus capillary pressure curves of neutrally wettable fibrous media was simulated with a random pore network model using a Voronoi diagram approach. The network was calibrated to fit experimental air-water capillary pressure data collected for carbon fibre paper commonly used as a gas diffusion layer in fuel cells. These materials exhibit unusually strong capillary hysteresis, to the extent that water injection and withdrawal occur at positive and negative capillary pressures, respectively. Without the need to invoke contact angle hysteresis, this capillary behaviour is re-produced when using a pore-scale model based on the curvature of a meniscus passing through the centre of a toroid. The classic Washburn relation was shown to produce erroneous results, and its use is not recommended when modelling fibrous media. The important effect of saturation distribution on the effective diffusivity of the medium was also investigated for both water injection and withdrawal cases. The findings have bearing on the understanding of both capillarity in fibrous media and fuel cell design.  相似文献   

8.
By utilizing fractal dimension as one of the parameters to characterize rocks, a mathematical model was derived to predict the production rate by spontaneous imbibition. This fractal production model predicts a power law relationship between spontaneous imbibition rate and time. Fractal dimension can be estimated from the fractal production model using the experimental data of spontaneous imbibition in porous media. The experimental data of recovery in gas-water-rock and oil–water–rock systems were used to test the fractal production model. The rocks (Berea sandstone, chalk, and The Geysers graywacke) in which the spontaneous water imbibition experiments were conducted had different permeabilities ranging from 0.5 to over 1000 md. The results demonstrate that the fractal production model can match the experimental data satisfactorily in the cases studied. The fractal dimension data inferred from the model match were approximately equal to the values of fractal dimension measured using a different technique (mercury-intrusion capillary pressure) in Berea sandstone.  相似文献   

9.
自发渗吸驱油是致密油藏提高采收率的有效手段,但不同的孔隙划分方法会导致原油可动性精细定量表征存在差异性.基于此,以鄂尔多斯盆地延长组致密油藏为研究对象,开展了四种典型致密岩心的自发渗吸驱油实验,利用基于核磁共振分形理论的流体分布孔隙精细划分方法,区分了致密砂岩岩心孔隙类型,明确了不同类型岩心孔隙结构对原油可动性和自发渗吸驱油速率的控制特征.研究结果表明不同类型岩心自发渗吸模拟油动用程度介于22.07%~33.26%,核磁共振T2谱双峰型岩心自发渗吸模拟油动用程度高于单峰型岩心;不同类型致密砂岩岩心中流体分布孔隙可初步划分出P1和P2两种类型, P1类型孔隙则可进一步划分出P1-1, P1-2和P1-3三种亚类型孔隙;致密砂岩岩心中P1和P2类孔隙中模拟油均有不同程度的动用, P1类孔隙作为致密岩心中主要孔隙,尤其是P1类孔隙中P1-2和P1-3类孔隙的数量决定了自发渗吸模拟油动用程度;P1-1, P1-2和P1-3类孔隙结构差异性对自发渗吸模拟油动用程度起决定性作用,较小尺寸孔径孔隙较大的孔隙结构差异性不仅提升了自发渗吸模拟油动用程度,而且提升了自发渗吸驱油速率;流体可动性指数较高的P...  相似文献   

10.

We predict waterflood displacement on a pore-by-pore basis using pore network modelling. The pore structure is captured by a high-resolution image. We then use an energy balance applied to images of the displacement to assign an average contact angle, and then modify the local pore-scale contact angles in the model about this mean to match the observed displacement sequence. Two waterflooding experiments on oil-wet rocks are analysed where the displacement sequence was imaged using time-resolved synchrotron imaging. In both cases the capillary pressure in the model matches the experimentally obtained values derived from the measured interfacial curvature. We then predict relative permeability for the full saturation range. Using the optimised contact angles distributed randomly in space has little effect on the predicted capillary pressures and relative permeabilities, indicating that spatial correlation in wettability is not significant in these oil-wet samples. The calibrated model can be used to predict properties outside the range of conditions considered in the experiment.

  相似文献   

11.
The ultimate driving force for counter-current spontaneous imbibition of a fluid into a porous material is the capillary pressure developed under dynamic conditions at the imbibition front. This is a difficult variable to measure. We report experiments using restricted counter-current spontaneous imbibition to find the maximum capillary pressure developed during imbibition of a light mineral oil (and brine) into initially air-filled sandstone core samples with one end-face open. The production of air from the core was prevented by covering its open face with a low permeability core segment set against the main test segment. The location of the imbibition front and the pressure resulting from compression of air ahead of the imbibition front were monitored. In some cases, in order to achieve stabilized gas pressures with the front still advancing through the core, the air in the core was compressed at the start of the imbibition test. The subsequently measured stabilized air pressures dropped only slightly as imbibition slowed. The measured pressures are directly related to the effective capillary pressures that drive spontaneous imbibition. After spontaneous imbibition ceased, the pressure was released by flow of air through the sealed end of the core and further spontaneous imbibition occurred in co-current mode. Comparison of the stabilized pressures with previously published oil/brine imbibition results showed close agreement after compensation for the difference in interfacial tension.  相似文献   

12.
Although, the effects of ultrasonic irradiation on multiphase flow through porous media have been studied in the past few decades, the physics of the acoustic interaction between fluid and rock is not yet well understood. Various mechanisms may be responsible for enhancing the flow of oil through porous media in the presence of an acoustic field. Capillary related mechanisms are peristaltic transport due to mechanical deformation of the pore walls, reduction of capillary forces due to the destruction of surface films generated across pore boundaries, coalescence of oil drops due to Bjerknes forces, oscillation and excitation of capillary trapped oil drops, forces generated by cavitating bubbles, and sonocapillary effects. Insight into the physical principles governing the mobilization of oil by ultrasonic waves is vital for developing and implementing novel techniques of oil extraction. This paper aims at identifying and analyzing the influence of high-frequency, high-intensity ultrasonic radiation on capillary imbibition. Laboratory experiments were performed using cylindrical Berea sandstone and Indiana limestone samples with all sides (quasi-co-current imbibition), and only one side (counter-current imbibition) contacting with the aqueous phase. The oil saturated cores were placed in an ultrasonic bath, and brought into contact with the aqueous phase. The recovery rate due to capillary imbibition was monitored against time. Air–water, mineral oil–brine, mineral oil–surfactant solution and mineral oil-polymer solution experiments were run each exploring a separate physical process governing acoustic stimulation. Water–air imbibition tests isolate the effect of ultrasound on wettability, capillarity and density, while oil–brine imbibition experiments help outline the ultrasonic effect on viscosity and interfacial interaction between oil, rock and aqueous phase. We find that ultrasonic irradiation enhances capillary imbibition recovery of oil for various fluid pairs, and that such process is dependent on the interfacial tension and density of the fluids. Although more evidence is needed, some runs hint that wettability was not altered substantially under ultrasound. Preliminary analysis of the imbibition recoveries also suggests that ultrasound enhances surfactant solubility and reduce surfactant adsorption onto the rock matrix. Additionally, counter-current experiments involving kerosene and brine in epoxy coated Berea sandstone showed a dramatic decline in recovery. Therefore, the effectiveness of any ultrasonic application may strongly depend on the nature of interaction type, i.e., co- or counter-current flow. A modified form of an exponential model was employed to fit the recovery curves in an attempt to quantify the factors causing the incremental recovery by ultrasonic waves for different fluid pairs and rock types.  相似文献   

13.

We investigate the influence of contact angle variations on spontaneous imbibition of moisture in porous materials. While the contact angle is typically assumed constant when modelling the moisture transfer in porous media, experimental findings put this assumption into question. It has been shown that during imbibition the contact angle notably rises with increasing meniscus velocity. This phenomenon resultantly affects the moisture retention curve, the relation linking the local capillary pressure to the local moisture saturation, which in turn impacts the imbibition rate and moisture distribution. This study investigates these dynamic effects via a pore network technique as well as a continuum approach. It is shown that the impacts of pore-scale contact angle variations on the imbibition process can be reproduced at the continuum scale through a modified moisture retention curve including a dynamic term. Complementarily a closed-form equation expressing the dynamic capillary pressure in terms of local saturation and saturation rate is derived. The continuum approach is then finally employed to predict measured moisture saturation profiles for imbibition in Berea sandstone and diatomite found in literature, and a fair agreement between simulated and measured outcomes is observed.

  相似文献   

14.
To investigate the influence of the organosilicon-acrylic on wetting properties of porous media, contact angle tests were performed on two different sandstones. In addition, the effectiveness of the emulsion on wettability alteration of porous media was validated by capillary rise and spontaneous imbibition tests. The results of wettability tests showed that the wettability of two sandstones was altered from water-wet to gas-wet after treatment with the emulsion. The principle that the critical radius of pore throats and wettability of porous media affect liquids flow was derived analytically and verified experimentally. Coreflood results demonstrated that the latex resulted in increasing the water permeability through altering the rock wettability to gas-wetting, then decreasing the friction drag between liquids and rocks surface. Thereby, the emulsion treatment could increase the flowback rate of trapped liquids. Experimental results were in good agreement with the theoretical analysis. In conclusion, all results indicated that the emulsion could alter the wettability from water-wet to intermediate gas-wet and enhance water permeability in porous media. It was extrapolated that the emulsion had the tremendous potential to be applied in field conditions, enhancing gas productivity through the cleanup of trapped water in the vicinity of the wellbore.  相似文献   

15.
The pore size distribution of cement mortar is studied in relation to water sorption experiments with the help of mercury intrusion and nitrogen sorption. The importance of adsorbed water is pointed out. Isothermal imbibition experiments at four temperatures are presented. The temperature-dependence of the mass transfer coefficients is compared to the one predicted by the classical model. Significant discrepancies are noticed. On the basis of the knowledge of the pore structure, a modelisation of the transfer process at moderate water content is proposed. It particularly takes into account Knudsen's vapor diffusion and effects of the presence of a discontinuous capillary phase interacting with vapor diffusion.  相似文献   

16.
Vacuum impregnation is a process method in which air and native solution are removed from the porous space of a given porous material and replaced by an external solution. Vacuum impregnation is divided into two steps: Firstly, the porous material is immersed in a liquid solution and exposed to subatmospheric pressure for a given time to ensure that air trapped in the porous materials will be removed; secondly, atmospheric pressure is re-established and the external solution penetrates the pore structure of the porous material. The objective of this study was to describe the hydrodynamic mechanisms involved in vacuum impregnation of porous materials as a function of capillary number and viscosity ratio. To achieve the objectives proposed in the present study, a transparent glass micromodel 7.7 cm × 7.4 cm was first constructed using the photolithographic technique. In addition, a stainless steel vacuum tank was built. The tank top was covered with a transparent reinforced glass plate. The whole system was connected to a vacuum pump, and a conventional video camera was adapted to record the experiments. Liquid saturation was determined through the image analysis process. Capillary number and viscosity ratio were determined for the drainage and imbibition processes. For the systems studied, we conclude that transport mechanisms ranged between stable displacement and capillary fingering during the vacuum step (drainage) while transport mechanisms ranged between continuous capillary and discontinuous capillary domains during the atmospheric step (imbibition). Earlier work indicated that our proposed process should be even more efficient for realistically large systems.  相似文献   

17.
Water imbibition during the waterflooding process of oil production only sweeps part of the oil present. After water disrupts the oil continuity, most oil blobs are trapped in porous rock by capillary forces. Developing an efficient waterflooding scheme is a difficult task; therefore, an understanding of the oil trapping mechanism in porous rock is necessary from a microscopic viewpoint. The development of microfocused X-ray CT scanner technology enables the three-dimensional visualization of multiphase phenomena in a pore-scale. We scanned packed glass beads filled with a nonwetting phase (NWP) and injected wetting phase (WP) in upward and downward injections to determine the microscopic mechanism of immiscible displacement in porous media and the effects of buoyancy forces. We observed the imbibition phenomena for small capillary numbers to understand the spontaneous imbibition mechanism in oil recovery. This study is one of the first attempts to use a microfocused X-ray CT scanner for observing the imbibition and trapping mechanisms. The trapping mechanism in spontaneous imbibition is determined by the pore configuration causing imbibition speed differences in each channel; these differences can disrupt the oil continuity. Gravity plays an important role in spontaneous imbibition. In upward injection, the WP flows evenly and oil is trapped in single or small clusters of pores. In downward injection, the fingering phenomena determine the amount of trapped oil, which is usually in a network scale. Water breakthrough causes dramatic decrease in the oil extraction rate, resulting in lower oil production efficiency.  相似文献   

18.
An experimental and theoretical study of the capillary flow of a Newtonian liquid (mineral oil) in a Hele-Shaw cell in which the gap varies sinusoidally in one coordinate direction, and flow takes place in the direction of constant channel cross-sectional area is reported. The geometric non-uniformity of the gap is observed to produce interface fingering. Finger length is observed to increase with decreasing spacing between plates of fixed shape, and with increasing gross penetration distance. In the regime of interest, finger length is observed to increase slowly with increasing interface advancement, motivating a quasi-steady model in which gross interface advancement is predicted by a Lucas–Washburn model and interface fingering is predicted by a Hele-Shaw model of steady flow. The steady interface velocity in the Hele-Shaw model is set equal to the instantaneous interface velocity predicted by the Lucas–Washburn model. Fingering predicted by the quasi-steady model matches the experimentally observed trends with regards to plate spacing and gross penetration distance.  相似文献   

19.
We investigated the mechanism of residual gas trapping at a microscopic level. We imaged trapped air bubbles in a Berea sandstone chip after spontaneous imbibition at atmospheric pressure. The pore structure and trapped bubbles were observed by microfocused X-ray computed tomography. Distributions of trapped bubbles in Berea and Tako sandstone were imaged in coreflooding at a capillary number of 1.0 × 10−6. Trapped bubbles are of two types, those occupying the center of the pore with a pore-scale size and others having a pore-network scale size. In low-porosity media such as sandstone, connected bubbles contribute greatly to trapped gas saturation. Effects of capillary number and injected water volume were investigated using a packed bed of glass beads 600μm in diameter, which had high porosity (38%). The trapped N2 bubbles are stable against the water flow rate corresponding to a capillary number of 1.0 × 10−4.  相似文献   

20.
Fiber-reinforced composite materials are often composed of fibers collected in bundles that are stitched together. During the impregnation of a fibrous preform by a liquid resin, the multiscale porous medium leads to an heterogenous flow front, and therefore bubbles may be created and entrapped. Indeed, for a wetting system, capillary pressure is higher inside bundle, due to the microspace between fibers, than outside the bundles that represent the macrospace, thus, inducing an overflow between both pore scales. Motivated by the prediction of bubble formation during fiber fabric infiltration for composite materials, we attempt to determine the bubble rate in imbibition through a simple model network with two connected capillaries, called ??Pore Doublet Model?? (PDM). Our system is composed of two parts: a first part, continuously interconnected, in which the suppling mass to the microchannel from the macrochannel occurs, and a second part connected only by nodes. To quantify the leading flow front, a theoretical model based on the supplying principle and arranged Washburn equation is proposed. This approach has been conducted for wetting liquids, Newtonian flows, incompressible fluids and pores, no inertial and gravitational forces and no dynamic contact angle. The geometrical variability (channel radius and length) and the different configuration of connections (continuous and discrete) influence the entrapped bubble rate, leading to either microbubble in the microchannel or macrobubble in the macrochannel. The outcomes can contribute to the knowledge of void formation especially during the filling of fibrous preforms and may extend the previous works on the PDM in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号