首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
杨旭峰  凡凤仙 《声学学报》2014,39(6):745-751
综合考虑黏性夹带力、Basset力、虚拟质量力和压力梯度力,建立颗粒在声场中的动力学模型,利用变步长四阶RungeKutta算法和二阶隐式Adams插值算法对颗粒的受力和运动进行数值模拟。将模拟和实验得到的颗粒运动特性进行对比,验证数值模拟的正确性。在此基础上,研究气温和颗粒密度对颗粒动力学的影响规律。结果表明,黏性夹带力对颗粒运动起主导作用;气温升高,压力梯度力与黏性夹带力之间的相位差减小,Basset力、虚拟质量力与黏性夹带力之间的相位差增大。研究还发现,气温较低时,颗粒密度对颗粒运动有重要影响,夹带系数随着密度的增加而迅速下降;气温较高时,颗粒密度对颗粒运动的影响较小,颗粒位移振幅和夹带系数相对低温时明显增加。   相似文献   

2.
The behavior of a test particle in a rarefied gas of classical particles is investigated. considering different interaction mechanisms (specular and diffuse reflection, respectively). For large mass ratio between test and gas particles, analytical expressions for the linear friction coefficient are derived. Moreover, the existence of directed motion of asymmetric test particles with distinct initial conditions (but in the absence of any gradients) is shown. The analytical results are supported by a numerical simulation technique applicable to systems with any mass ratio, which is described here in detail.  相似文献   

3.
本文对直流除尘器涡室内固体粒子的湍流脉动现象进行了数值分析,通过气体速度随机脉动谱,把气相湍流运动对固体粒子运动的影响引入粒子的运动平衡方程中,用拉格朗日法模拟了粒子的轨迹及其扩散运动,应用四阶龙科库塔方法求解粒子的运动方程。计算结果表明对粒子的数值模拟可以较好地预测除尘器的性能,如除尘器的切割粒径。  相似文献   

4.
5.
三维混合沙输运数值模拟   总被引:1,自引:0,他引:1  
采用计算流体力学和颗粒离散元耦合的方法模拟了三维混合沙输运过程。采用体平均的Navier-stokes方程来描述气相运动,考虑了气相和颗粒相的相互作用。颗粒运动通过求解牛顿运动方程来求解,采用硬球模型描述颗粒和颗粒及颗粒和壁面的碰撞。本模型中,颗粒运动是三维的而气相运动是二维的。计算结果表明:总输沙率沿高度方向在大于2cm以上按照指数衰减,在2 cm以下则偏大;各粒径颗粒具有不同的输沙率分布,粗粒径颗粒按指数规律衰减,其它粒径颗粒输沙率随高度先指数增加后减少;各粒径颗粒平均水平速度随高度对数函数增加且同高度时随粒径增大而减小,1 cm高度以下则相反;沙粒平均粒径沿高度线性递减,2 cm以下粒径偏大。  相似文献   

6.
The motion of a particle in the Tolman metric generated by a photon gas source is discussed. Both the case of geodesic motion and motion with nonzero friction, due to photon scattering effects, are analyzed. In the Minkowski limit, the particle moves along a straight line segment with a decelerated motion, reaching the endpoint at zero speed. The curved case shows a qualitatively different behavior; the geodesic motion consists of periodic orbits, confined within a specific radial interval. Under the effect of frictional drag, this radial interval closes up in time and in all our numerical simulations the particle ends up in the singularity at the center.  相似文献   

7.
陈骏  余洪伟 《中国物理快报》2004,21(12):2362-2364
The effects of quantum electromagnetic fluctuations upon the motion of a test charged particle are examined in a cylindrical spacetime in which one spatial is compactified. The mean squared fluctuations in the velocity and position of the test particle are calculated. It is found that the random motion of the test particle will be anisotropic. The possible consequences for theories with extra compactified spatial dimensions are discussed.  相似文献   

8.
A non-linear transformation of the coordinates connecting an arbitrary system, in which the motion of the test particle is given, with a system connected with the test particle is derived within the framework of the general theory of relativity. The transformation contains the Lorentz transformation as a special case. Transformations are written for some special cases of noninertial motion of a test particle.  相似文献   

9.
Brownian motion has played important roles in many different fields of science since its origin was first explained by Albert Einstein in 1905. Einstein's theory of Brownian motion, however, is only applicable at long time scales. At short time scales, Brownian motion of a suspended particle is not completely random, due to the inertia of the particle and the surrounding fluid. Moreover, the thermal force exerted on a particle suspended in a liquid is not a white noise, but is colored. Recent experimental developments in optical trapping and detection have made this new regime of Brownian motion accessible. This review summarizes related theories and recent experiments on Brownian motion at short time scales, with a focus on the measurement of the instantaneous velocity of a Brownian particle in a gas and the observation of the transition from ballistic to diffusive Brownian motion in a liquid.  相似文献   

10.
When irradiated sideways, by visible light, a particle can perform different kinds of motion, (e.g. in direction of irradiation, opposite to irradiation, vertical movement, helicoidally, etc.). This phenomenon is called photophoresis. Photophoresis is based on momentum transfer between the aerosol particle and surrounding gas molecules. Photophoresis strongly depends on the pressure of the surrounding gas. Particles mostly influenced by photophoresis are those of μm size. Two main types of forces describe photophoretic motion: ΔT force: The thermal accommodation coefficient α is constant over the particle surface. As a result of the thermal accommodation, gas molecules on the warm side of a particle leave the surface faster than gas molecules on the cold side. This leads to ΔT force on the particle towards the colder side. Typical motion of the particle will be either away from light irradiation (positive photophoresis), or in direction of light irradiation (negative photophoresis). In the case of negative photophoresis, the back side of the particle, due the nature of light absorption, will be heated more than front side of the particle. Δα force: If the particle is at a constant temperature, which is different from the temperature of the surrounding gas, and the thermal accommodation coefficient α varies over the particle surface, the net momentum between gas molecules and particle will be transferred. In this case, the result will be body fixed Δα force. Depending on the particle surface properties, Δα force can direct the particle in any possible photophoresis could also play important role in planet formation and astrophysics.  相似文献   

11.
The present study attempts to develop a detailed numerical approach and a simulation procedure to predict the motion of gas, ions and particles inside a simple parallel plate channel containing a single corona wire. A hybrid Finite Element (FEM)-Flux Corrected Transport (FCT)-Finite Volume (FVM) method is used: the FEM–FCT numerical algorithm is applied for modeling the steady-state corona discharge, while the turbulent gas flow and the particle motion under electrostatic forces are modeled using the commercial CFD code FLUENT. Calculations for the gas flow are carried out by solving the Reynolds-averaged Navier–Stokes equations and turbulence is modeled using the k? turbulence model. An additional source term is added to the gas flow equation to include the effect of the electric field, obtained by solving a coupled system of the electric field and charge transport equations using User-Defined Functions (UDFs). The particle phase is simulated based on the Lagrangian approach, where a large number of particles is traced with their motion affected by the gas flow and electrostatic forces using the Discrete Phase Model (DPM) in FLUENT. The developed model is useful to gain insight into the particle collection phenomena that take place inside an ESP.  相似文献   

12.
We analyze the motion of an aerosol particle in a gas mixture in which the molecules of one of the components have been selectively excited as to velocity by resonant optical radiation. We derive expressions for the force with which the gas acts on the particle and for the velocity of particle motion in the Knudsen regime. We also examine the dependence of the force and velocity of photophoresis on the offset of the radiation frequency from the center of the absorption line and on the concentration and mass ratios of the molecules of the absorbing and buffer gases. Zh. éksp. Teor. Fiz. 116, 1313–1328 (October 1999)  相似文献   

13.
本文结合气体湍流运动模型,颗粒运动的轨道模型和密相床层动力学的经验关联式,建立了旋涡流化床颗粒夹带和扬析的数学模型,发展了相应的求解程序。用本文提出的数学模型对普通鼓泡流化床中颗粒夹带的计算结果与前人的经验公式相符;对旋涡流化床和普通的鼓泡流化床颗粒扬析的计算结果与实验数据吻合较好。  相似文献   

14.
We consider the motion of a heavy mass in an ideal gas in a semi-infinite system, with elastic collisions at the boundary. The motion is determined by elastic collisions. We prove in the Brownian motion limit the convergence of the position and velocity process of the heavy particle to a diffusion process in which velocity and position remain coupled.  相似文献   

15.
基于多松弛格子Boltzmann模型,对竖直细长微通道内颗粒自由沉降过程进行模拟,分析气体稀薄效应、初始位置以及颗粒间相互作用对微颗粒沉降特性的影响.研究表明:随Knudsen数增大,微通道内气体稀薄效应增强,颗粒表面气体滑移速度增大,气相流体有效粘度减小,颗粒相同运动状态下受到气体阻力相应减小,颗粒沉降平衡速度明显增大;不同初始位置颗粒沉降过程存在明显差异,初始位置偏离中心线颗粒将发生水平方向位移且呈振荡趋势,最终稳定于中心线平衡位置;在微尺度双颗粒沉降DKT现象过程中,气体稀薄效应影响颗粒运动特性,后颗粒跟随过程明显增长.  相似文献   

16.
杨贤龙  吴立群  巢炎 《应用声学》2014,33(3):258-263
为了将正交超声驻波技术用于多晶硅陷光结构网格化微加工,以达到均匀加工的目的,本文从理论、模拟和实验等方面研究了粒子由无规则排列到超声作用后形成二维网格状排列的运动过程,网格化控制机理,并建立了二维运动方程。计算机仿真结果与实验结果一致,表明应用超声驻波进行网格化微纳加工设想是可行的。  相似文献   

17.
We study a system consisting of a heavy quantum particle, called the tracer particle, coupled to an ideal gas of light Bose particles, the ratio of masses of the tracer particle and a gas particle being proportional to the gas density. All particles have non-relativistic kinematics. The tracer particle is driven by an external potential and couples to the gas particles through a pair potential. We compare the quantum dynamics of this system to an effective dynamics given by a Newtonian equation of motion for the tracer particle coupled to a classical wave equation for the Bose gas. We quantify the closeness of these two dynamics as the mean-field limit is approached (gas density ${\to \infty}$ ). Our estimates allow us to interchange the thermodynamic with the mean-field limit.  相似文献   

18.
WU Ning 《理论物理通讯》2008,49(1):129-132
Based on the coupfing between the spin of a particle and gravitoelectromagnetic field, the equation of motion of a spinning test particle in gravitational field is deduced. From this equation of motion, it is found that the motion of a spinning particle deviates from the geodesic trajectory, and this deviation originates from the coupling between the spin of the particle and gravitoelectromagnetic field, which is also the origin of Lense-Thirring effects. In post-Newtonian approximations, this equation gives the same results as those of Mathisson-Papapetrou equation. Effect of the deviation of geodesic trajectory is detectable.  相似文献   

19.
Stochastic motion of a hard point separating two semi-infinite subvolumes of a hard point gas in R 1 is studied. The partitionning particle is identical to the particles of the gas and can be looked upon as a tagged particle playing the role of a (microscopic) piston. At the initial moment it is at rest having to the right and to the left of it gases in thermodynamic equilibrium. Its further motion is entirely induced by collisions. The stochastic motion of the piston is determined rigorously. The form of the stationary velocity distribution is calculated. It turns out that at equal initial pressures the piston acquires asymptotically a drift velocity oriented towards the higher temperature region. There is no drift if the temperatures and densities combine to produce on both sides equal particle fluxes. Although the qualitative agreement with Boltzmann's theory is found, the Boltzmann equation does not predict correctly the thermodynamic conditions under which the drift vanishes.  相似文献   

20.
《Physics letters. A》1988,128(5):273-276
Properties of the periodic Lorentz gas, which describes particle motion in a lattice of hard spheres, are related to experiments on channeling in crystals. Extensive theoretical knowledge of the Lorentz gas can be applied to make predictions about diffusion and radiation in channeling experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号