首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Three optically active phenylacetylene polymers with chiral bulky pinanyl groups, (?)‐poly[4‐(dimethylpinanylsilyl)phenylacetylene] [(?)‐poly(PSPA)], (+)‐poly{4‐[3‐(10‐pinanyl)tetramethyldisiloxy]phenylacethylene} [(+)‐poly(PDSPA)], and their copolymer [(?)‐copoly(PSPA/PDSPA)], were synthesized. We observed high chirality in the main‐chain chromophore of (?)‐poly(PSPA), due to the presence of a chiral helix, with circular dichroism spectroscopy. In contrast, (+)‐poly(PDSPA),with flexible SiOSi spacers between the chiral pinanyl group and the main chain, had lower chirality. (?)‐Poly(PSPA), with large circular dichroism signals, was prepared by polymerization with a rhodium catalyst and had a highly stereoregular main chain (high cis‐configuration percentage). However, (?)‐poly(PSPA) prepared with a tungsten catalyst had lower chirality and lower stereoregularity in the main chain. A membrane from (?)‐poly(PSPA) showed enantioselective permeability for tryptophan in an aqueous solution. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1689–1697, 2002  相似文献   

2.
This article reports a class of nanoscale materials, that is, optically active nanoparticles consisting of helical‐substituted polyacetylenes. Such nanoparticles were prepared via aqueous catalytic miniemulsion polymerization, by which nanoparticles with a wide range of size (diameter: 60–400 nm) can be easily prepared. The nanoparticles could be obtained in quantitative monomer conversions. Large specific rotations and intense circular dichroism effects demonstrated that the nanoparticles possessed large optical activities; moreover, the optical activities were found to increase with a decrease in particle size. From the obtained polymer nanoparticles and with poly(vinyl alcohol) (PVA) as supporting material, composite films were further prepared and also exhibited considerable optical activities. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1661–1668, 2010  相似文献   

3.
N‐(1‐Phenyldibenzosuberyl)methacrylamide (PDBSMAM) and its derivative N‐[(4‐butylphenyl)dibenzosuberyl]methacrylamide (BuPDBSMAM) were synthesized and polymerized in the presence of (+)‐ and (?)‐menthols at different temperatures. The tacticity of the polymers was estimated to be nearly 100% isotactic from the 1H NMR spectra of polymethacrylamides derived in D2SO4. Poly(PDBSMAM) was not soluble in the common organic solvents, and its circular dichroism spectrum in the solid state was similar to that of the optically active poly(1‐phenyldibenzosuberyl methacrylate) (poly(PDBSMA)) with a prevailing one‐handed helicity, indicating that the poly(PDBSMAM) also has a similar helicity. Poly(BuPDBSMAM) was optically active and soluble in THF and chloroform. Its optical activity was much higher than that of the poly[N‐(triphenylmethayl)methacrylamide], suggesting that one‐handed helicity may be more efficiently induced on the poly(BuPDBSMAM). The copolymerization of BuPDBSMAM with a small amount of optically active N‐[(R)‐(+)‐1‐(1‐naphthyl)ethyl]methacrylamide, particularly in the presence of (?)‐menthol, produced a polymer with a high optical activity. The prevailing helicity may also be efficiently induced. The chiroptical properties of the obtained polymers were studied in detail. The chiral recognition by the polymers was also evaluated. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1304–1315, 2007  相似文献   

4.
Cyclopolymerization of 1,6‐heptadiyne derivatives containing the bulky substitutents was carried out by metathesis catalyst systems. The catalytic activity of molybdenum (V) chloride (MoCl5) in homopolymerization is greater than that of the MoCl5‐cocatalyst system, and copolymerization is vice versa in catalytic activity. Newly synthesized homo‐ and copolymers were soluble in common organic solvents and could afford thin film by solution‐casting onto the indium–tin oxide coated glass substrate. The NMR, Fourier transform infrared spectroscopic, and UV–visible spectra indicated that these polymers have a linear conjugated cyclic polyene structure having a bulky substitutent as a pendant group. The number‐average molecular weight of these polymers was in the range of 2.4–6.27 × 103. The copolymers exhibited a relatively higher molecular weight than that of the homopolymers. The copolymers were stable up to 380 °C. The electrical conductivities of the I2‐doped copolymer thin film by the four‐point probe method and surface plasmon resonance spectroscopy were about 500 and 600 S/cm, respectively. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 958–964, 2002  相似文献   

5.
For many years, considerable research efforts have been dedicated to π‐conjugated polymers because of their extraordinary electronic, optical, and structural properties. The employed transition‐metal‐based initiating systems comprise not only simple transition‐metal salts but also rather sophisticated mixtures of two, three, or four compounds and even highly defined single‐component systems such as transition‐metal alkylidene complexes. Extensive fine‐tuning of the electronic and steric properties of initiator–monomer systems eventually allowed the tailor‐made synthesis of conjugated materials via living polymerization techniques. This article focuses on recent developments in the field of the living polymerization of substituted acetylene derivatives. Ill‐defined group 5 and 6 transition metal halide‐based initiators, well‐defined transition‐metal alkylidene complexes, and rhodium(I)‐based systems that induce the living polymerization of numerous substituted acetylenes are reviewed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5723–5747, 2005  相似文献   

6.
Optically active poly(m‐phenylene)s substituted with chiral oxazoline derivatives have been synthesized by the nickel‐catalyzed Yamamoto coupling reaction of optically active (S)‐4‐benzyl‐2‐(3,5‐dihalidephenyl)oxazoline derivatives (X = Br or I). The structures and chiroptical properties of the polymers were characterized by spectroscopic methods and thermal gravimetric analyses. The polymers showed higher absolute optical specific rotation values than their corresponding monomer, and showed a Cotton effect at transition region of conjugated main chain. The optical activities of the polymers should be attributed to the higher order structure such as helical conformations. Moreover, the helical conformation could be induced by addition of metal salts into polymer solutions. The polymers showed good thermal stabilities, which was attributable to the oxazoline side chains. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

7.
This article presents two novel artificial helical polymers, substituted polyacetylenes with urea groups in side chains. Poly( 4 ) and poly( 5 ) can be obtained in high yields (≥97%) and with moderate molecular weights (11,000–14,000). Poly( 4 ) contains chiral centers in side chains, and poly( 5 ) is an achiral polymer. Both of the two polymers adopted helical structures under certain conditions. More interestingly, poly( 4 ) exhibited large specific optical rotations, resulting from the predominant one‐handed screw sense. The helical conformation in poly( 5 ) was stable against heat, while poly( 4 ) underwent conformational transition from helix to random coil upon increasing temperature from 0 to 55 °C. Solvents had considerable influence on the stability of the helical conformation in poly( 4 ). The screw sense adopted by the helices was also largely affected by the nature of the solvent. Poly( 4 ‐co‐ 5 )s formed helical conformation and showed large optical rotations, following the Sergeants and Soldiers rule. By comparing the present two polymers (with one ? N? H groups) with the three polymers previously reported (with two ? N? H groups in side chains), the nature of the hydrogen bonds formed between the neighboring urea groups played big roles in the formation of stable helical conformation. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4112–4121, 2008  相似文献   

8.
9.
A novel chiral N‐propargylsulfamide monomer ( 1a ) and its enantiomer ( 1b ) were synthesized and polymerized with (nbd)Rh+B?(C6H5)4 as a catalyst providing poly(1) (poly( 1a ) and poly( 1b )) in high yields (≥99%). Poly(1) could take stable helices in less polar solvents (chloroform and THF), demonstrated by strong circular dichroism signals and UV–vis absorption peaks at about 415 nm and the large specific rotations; but in more polar solvents including DMF and DMSO, poly(1) failed to form helix. Quantitative evaluation with anisotropy factor showed that the helical screw sense had a relatively high thermal stability. These results together with the IR spectra measured in solvents showed that hydrogen bonding between the neighboring sulfamide groups is one of the main driving forces for poly(1) to adopt stable helices. In addition, copolymerization of monomer 1a and monomer 2 was conducted, the solubility of poly(1) was improved drastically. However, the copolymerization had adverse effects on the formation of stable helices in the copolymers. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 500–508, 2007  相似文献   

10.
A chiral azobenzene‐containing N‐propargylamide monomer, that is, (R)‐2‐(4‐phenylazophenoxy)‐n‐prop‐2‐ynyl‐propionamide, was prepared and polymerized in the presence of a rhodium catalyst to yield an optically active polyacetylene. The 1H NMR analysis of the polymer indicated a predominant cis structure of the backbone (cis concentration = 80%); and the chiroptical property studies showed an enhanced optical rotatory power and a strong Cotton effect, indicating the formation of a secondary helical conformation. A reversible optical modulation of chiroptical properties of the polymer due to the reversible photoisomerization of the azobenzene was observed. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6047–6054, 2006  相似文献   

11.
Four novel chiral phenylacetylenes having an L ‐amino alcohol residue and two hydroxymethyl groups were synthesized and polymerized by an achiral catalyst ((nbd)Rh+6‐(C6H5)B?(C6H5)3]) or a chiral catalytic system ([Rh(nbd)Cl]2/(S)‐ or (R)‐phenylethylamine ((S)‐ or (R)‐PEA)). The two resulting polymers having an L ‐valinol or L ‐phenylalaninol residue showed Cotton effects at wavelengths around 430 nm. This observation indicated that they had an excess of one‐handed helical backbones. Positive and negative Cotton effects were observed only for the polymers having an L ‐valinol residue produced by using (R)‐ and (S)‐PEA as a cocatalyst, respectively, although the monomer had the same chirality. Even when the achiral catalyst was used, the two resulting polymers having an L ‐valinol or L ‐phenylalaninol residue showed Cotton effects despite the long distance between the chiral groups and the main chain. We have found the first example of a new type of chiral monomer, that is, a chiral phenylacetylene monomer having an L ‐amino alcohol residue and two hydroxy groups that was suitable for both modes of asymmetric polymerization, that is, the helix‐sense‐selective polymerization ( HSSP ) with the chiral catalytic system and the asymmetric‐induced polymerization ( AIP ) with the achiral catalyst. The other two monomers having L ‐alaninol and L ‐tyrosinol were found to be unsuitable to neither HSSP nor AIP because of their polymers' low solubility. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

12.
Asymmetric anionic polymerizations of 2,6-dimethyl-7-phenyl-1,4-benzoquinone methide ( 1 ) were performed with various chiral anionic initiators, and the specific rotations of the obtained polymers were investigated. Optically active poly( 1 )s with configurational chirality were obtained with all the initiators, and a complex of fluorenyllithium (FlLi) with (−)-sparteine [(−)-Sp] produced poly( 1 ) with the largest negative specific rotation ([α]435 = −26.8°). The specific rotations of poly( 1 )s obtained with FlLi/(−)-Sp depended on the initiator concentration and the solvent polarity. The maximum specific rotations were obtained at an almost constant initiator concentration (ca. 0.03 mol/L), regardless of the monomer concentration, in toluene, whereas a higher initiator concentration was required in more polar solvents. These results suggested that the aggregation state of the propagating chain end significantly affected the specific rotation of poly( 1 ). © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4548–4555, 2004  相似文献   

13.
Novel carbazole‐containing acetylene monomer, 1‐(3‐ethynyl‐9‐carbazoyl)?4‐(9‐carbazoyl)benzene 1 was synthesized, polymerized, and copolymerized with phenylacetylene ( PA ) using [(nbd)RhCl]2‐Et3N, Rh+(nbd)[η6‐C6H5B(C6H5)3], and WCl6‐Ph4Sn as catalysts. Polymers with number‐average molecular weights ranging from 7800 to 33,200 were obtained in 60%–quantitative yields. The absorption band edge of poly( 1 ‐co‐ PA ) ( 1 :PA = 8:2) was positioned at a wavelength longer than those of 1 and polyvinylcarbazole. Poly( 1 ‐co‐ PA ) ( 1:PA = 8:2) emitted fluorescence with 60% quantum yield. Poly( 1 ‐co‐ PA ) ( 1:PA = 8:2) worked as a hole transport material of an OLED with tris(8‐hydroxyquinoline)aluminum (Alq3) as an emission material. © 2015 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 2015 , 53, 1245–1251  相似文献   

14.
Asymmetric anionic homopolymerizations of achiral N‐substituted maleimides (RMI) were performed with lithium 4‐alkyl‐2,2‐dialkyloxazolidinylamide. All obtained polymers were optically active, exhibiting opposite optical rotation to that of a corresponding oxazolidinyl group at the terminal of the main chain. This suggests that opposite optical rotation to the corresponding chiral oxazolidine was induced to the polymer main chain. In the polymerization using a fluorenyllithium (FlLi)–oxazolidine complex, the obtained polymer with a fluorenyl group at the polymer end showed a negative specific rotation. This also suggests that asymmetric induction took place in the polymer main chain. The asymmetric induction was supported by the circular dichroism (CD) and GPC analysis with polarimetric detector. Optical activity of the polymer was attributed to different contents of (S,S) and (R,R) structures formed from threo‐diisotactic additions, as supported by the 13C‐NMR spectra of the polymers and the model compounds. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 473–482, 1999  相似文献   

15.
Novel optically active substituted acetylenes HC? CCH2CR1(CO2CH3)NHR2 [(S)‐/(R)‐ 1 : R1 = H, R2 = Boc, (S)‐ 2 : R1 = CH3, R2 = Boc, (S)‐ 3 : R1 = H, R2 = Fmoc, (S)‐ 4 : R1 = CH3, R2 = Fmoc (Boc = tert‐butoxycarbonyl, Fmoc = 9‐fluorenylmethoxycarbonyl)] were synthesized from α‐propargylglycine and α‐propargylalanine, and polymerized with a rhodium catalyst to provide the polymers with number‐average molecular weights of 2400–38,900 in good yields. Polarimetric, circular dichroism (CD), and UV–vis spectroscopic analyses indicated that poly[(S)‐ 1 ], poly[(R)‐ 1 ], and poly[(S)‐ 4 ] formed predominantly one‐handed helical structures both in polar and nonpolar solvents. Poly[(S)‐ 1a ] carrying unprotected carboxy groups was obtained by alkaline hydrolysis of poly[(S)‐ 1 ], and poly[(S)‐ 4b ] carrying unprotected amino groups was obtained by removal of Fmoc groups of poly[(S)‐ 4 ] using piperidine. Poly[(S)‐ 1a ] and poly[(S)‐ 4b ] also exhibited clear CD signals, which were different from those of the precursors, poly[(S)‐ 1 ] and poly[(S)‐ 4 ]. The solution‐state IR measurement revealed the presence of intramolecular hydrogen bonding between the carbamate groups of poly[(S)‐ 1 ] and poly[(S)‐ 1a ]. The plus CD signal of poly[(S)‐ 1a ] turned into minus one on addition of alkali hydroxides and tetrabutylammonium fluoride, accompanying the red‐shift of λmax. The degree of λmax shift became large as the size of cation of the additive. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

16.
2,2,6,6‐Tetramethyl‐4‐[d‐(+)‐10‐camphorsulfonyl]‐1‐piperidinyloxy was synthesized and used as a chiral nitroxide for the bulk polymerizations of styrene initiated with benzoyl peroxide (BPO), tetraethylthiuram disulfide (TETD), and thermal initiation. The results showed that the polymerizations proceeded in a controlled/living way; that is, the kinetics presented approximately first‐order plots, and the number‐average molecular weights of the polymers with narrow molecular weight distributions (weight‐average molecular weight/number‐average molecular weight) increased with the monomer conversion linearly. The molecular weight distributions in the case of thermal initiation were narrower than those in the case of BPO and TETD, whereas the polymerization rate with BPO or TETD as an initiator was obviously faster than that with thermal initiation. In addition, successful chain‐extension reactions were carried out, and the structures of the obtained polymers were characterized by gel permeation chromatography and 1H NMR. The specific rotations of the polymers were also measured by polarimetric analysis. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1522–1528, 2006  相似文献   

17.
Menthyl vinyl ketone (MVK) was radically polymerized to obtain a polymer with excess of one‐handed helical sense. Like as the anionically polymerized poly‐MVK, the radically polymerized poly‐MVK also kept stable one‐handed helical conformation in solvent. The optical rotation and the circular dichroism signal intensity of the radically polymerized poly‐MVK were larger than that of the anionically polymerized poly‐MVK. The molecular weight of the radically polymerized poly‐MVK was much larger than that of the THF‐soluble part of the anionically polymerized poly‐MVK. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

18.
A series of optically active dendrons with a primary amino group at the terminal were prepared from L - or D -glutamic acid, and their helicity induction abilities for a poly(phenylacetylene) bearing a phosphonate pendant were characterized with ultraviolet–visible and circular dichroism spectroscopy. The magnitude of the Cotton effects of the polymer induced by the dendrons significantly increased upon complexation with a higher generation dendron. The effect of the chirality of the glutamate residues (L and D ) on the helicity induction was also studied. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4580–4586, 2004  相似文献   

19.
A mixture of triphenylmethyl methacrylate (TrMA) and methyl methacrylate (MMA) was polymerized with chiral anionic initiator, such as fluorenyl lithium(−)-sparteine [FlLi-(−)-Sp] and fluorenyl lithium-(+)-2S,3S-dimethoxy-1,4-bis(dimethylamino)butane [FlLi-(+)-DDB] in toluene at −78°C. The results show that after the stable helix formed, when FlLi-(+)-DDB was used as the initiator, TrMA and MMA could be copolymerized, whereas when FlLi-(−)-Sp was used, the two monomers tended to be selectively polymerized into two polymers. This phenomenon has been explained by the existence of helix-selective polymerization. © John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 1925–1931, 1997  相似文献   

20.
Ten hydrophobic, substituted, acetylene monomers were examined as to their abilities to form an inclusion complex with hydroxypropyl‐β‐cyclodextrin (HPCD). Only the monomers with suitable substitutents were found to form the monomer/HPCD complex, which was identified by NMR, FTIR, and UV‐vis spectroscopy. Polymerizations of the monomers were successfully carried out in aqueous solution by using the prepared monomer/HPCD inclusion complex and by using a water‐soluble Rh‐based catalyst, [Rh(cod)2BF4] or [Rh(nbd)(H2O)OTs]. Such polymerizations provided high‐yield (>90%) polymers with a cis content of approximately 100%. The as‐prepared polymers could take an ordered helical conformation, just like their counterparts obtained in organic solvents.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号