首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calcification of implanted biomaterials is highly undesirable and limits clinical applicability. Experiments were carried out to assess the calcification resistance of polyisobutylene (PIB), PIB‐based polyurethane (PIB‐PU), PIB‐PU reinforced with (CH3)3N+CH2CH2CH2NH2 I?‐modified montmorillonite (PIB‐PU/nc), PIB‐based polyurethane urea (PIB‐PUU), PIB‐PU containing S atoms (PIBS‐PU), PIBS‐PU reinforced with (CH3)3N+CH2CH2CH2NH2 I?‐modified montmorillonite (PIBS‐PU/nc), and poly(isobutylene‐b‐styrene‐b‐isobutylene) (SIBS), relative to that of a clinically widely implanted polydimethylsiloxane (PDMS)–based PU, Elast‐Eon (the “control”). Samples were incubated in simulated body fluid for 28 days at 37°C, and the extent of surface calcification was analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM), energy‐dispersive X‐ray spectroscopy (EDX), X‐ray photoelectron spectroscopy (XPS), and Fourier‐transform‐infrared (FT‐IR) spectroscopy. Whereas the PDMS‐based PU showed extensive calcification, PIB and PIB‐PU containing 72.5% PIB, ie, a polyurethane whose surface is covered with PIB, were free of calcification. PIBS‐PU and PIB‐PUU, ie, polyurethanes that contain S or urea groups, respectively, were slightly calcified. The amine‐modified montmorillonite‐reinforcing agent reduced the extent of calcification. SIBS was found slightly calcified. Evidently, PIB and materials fully coated with PIB are calcification resistant.  相似文献   

2.
Multistimuli‐responsive shape‐memory polymers are highly desirable in various applications, and numerous modes have been developed in recent years. However, most of them need to reprogram before they are ready to respond to another stimulus while one is triggered. Here, a new strategy is developed to achieve dual‐stimuli‐responsive triple‐shape memory with non‐overlapping effect in one programming cycle. Here, a series of poly(l ‐lactide)‐poly(tetramethylene oxide) glycol copolymers (PLA‐PTMEG‐A) is prepared by selected dangling photoresponsive anthracene moieties on the crystalline PTMEG backbone. The architectures of the copolymers are well‐controlled in order to keep a good balance between the crystallinity of the soft segment and the mobility of the anthracene moieties. Thus, PLA‐PTMEG‐A's can respond to heat and light with non‐overlapping effect. The thermally‐induced shape‐memory effect (TSME) is realized by the crystallization–melting transition of PTMEG soft segments, while the light‐induced shape‐memory effect (LSME) is achieved by the reversible photodimerization of anthracene groups. In view of the non‐overlapping effect of TSME and LSME in the copolymers, a triple‐shape‐memory effect triggered by dual‐stimuli is realized in one programming and recovery cycle.

  相似文献   


3.
Surface wrinkles are interesting since they form spontaneously into well‐defined patterns. The mechanism of formation is well‐studied and is associated with the development of a critical compressive stress that induces the elastic instability. In this work, we demonstrate surface wrinkles that dynamically change in response to a stimulus can improve interfacial adhesion with a hydrogel surface through the dynamic evolution of the wrinkle morphology. We observe that this control is related to the local pinning of the crack separation pathway facilitated by the surface wrinkles during debonding, which is dependent on the contact time with the hydrogel. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

4.
In this work, a new stimuli‐responsive composite polymer hydrogel containing partially exfoliated graphite was prepared by frontal polymerization. The materials obtained were characterized by differential scanning calorimetry, RAMAN, scan electron microscopy, transmission electron microscopy, atomic force microscopy, and in terms of swelling behavior. It was found that the maximum temperature reached by the polymerization front and the lower critical solution temperature are affected by the graphite content. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

5.
Polyisobutylene (PIB)‐based polyurethanes (PUs) exhibit unparalleled hydrolytic‐oxidative‐biologic stability and are melt processible, however, their mechanical (strength) properties are modest mainly due to insufficient H bonds. We posited and demonstrate that the ultimate properties of PIB‐PUs are enhanced, while their melt processibility is maintained, by the judicious introduction of urea linkages, i.e., strong bifurcated H bonds, in the chain. The incorporation of bifurcated H bonds in PIB‐PUs was achieved by using the conventional butane diol chain extender (CE) in combination with controlled amounts of amino alcohol as co‐chain extender (co‐CE). Polyurethanes containing both urethane and urea linkages are polyurethane‐ureas (PUU). Specifically, PIB‐PUUs prepared with PIB‐diol/MDI together with 80/20 mole % butane diol/amino butanol exhibited ~30 MPa tensile strength, ~550% elongation, ~80 Shore A hardness, and ~137 °C flow temperature. Other amino alcohols, i.e., amino ethanol, ‐propanol, and ‐hexanol, were less effective co‐CEs. 1H‐NMR and FT‐IR spectroscopies indicate the presence of bifurcated H bonds in PIB‐PUUs prepared with CE/co‐CE combinations. Characterization by differential scanning calorimetry, thermogravimetric analysis, dynamic mechanical thermal analysis, and creep experiments also suggest bifurcated H bonds in PIB‐PUU. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2361–2369  相似文献   

6.
Thin polymer films may undergo a wide variety of elastic instabilities that include global buckling modes, wrinkling and creasing of surfaces, and snapping transitions. Traditionally, these deformations have usually been avoided as they often represent a means of mechanical failure. However, a new trend has emerged in recent years in which buckling mechanics can be harnessed to endow materials with beneficial functions. For many such applications, it is desirable that such deformations happen reversibly and in response to well‐defined signals or changes in their environment. While significant progress has been made on understanding and exploiting each type of deformation in its own right, here we focus on recent advances in the control and application of stimuli‐responsive mechanical instabilities. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1441–1461  相似文献   

7.
This article highlights the biomaterial‐related research of the Macromolecular Engineering Research Centre (MERC). The MERC group concentrated on polyisobutylene (PIB)‐based biomaterials. In this article, first the unique properties of PIB are discussed, followed by a review of PIB‐based potential biomaterials. MERC's systematic research program aimed to develop novel PIB‐based biomaterials is then highlighted, including surface modification and biocompatibility studies. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3091–3109, 2004  相似文献   

8.
For the synthesis of brush‐shaped conjugated polymers consisting of a poly(phenylene butadiynylene) backbone and well‐defined poly(vinyl ether) (polyVE) side chains, we designed polyVE‐based macromonomers bearing a diethynyl benzene group at the terminus and applied them to the grafting through synthesis. The macromonomer (DE‐PIBVE) was synthesized by living cationic polymerization of isobutyl VE (IBVE) using a functionalized initiator (TMS‐DEVE‐TFA) having a TMS protected diethynyl benzene moiety, followed by deprotection of the TMS groups. As a result, we succeeded in the synthesis of the target brush‐shaped conjugated polymers [poly(DE‐PIBVE)] by oxidative coupling reaction of the diethynyl benzene groups. We found that the solution of poly(DE‐PIBVE) with a specific side chain length exhibited solvatochromism and thermochromism depending on the polarity of the media employed. This phenomenon was attributed to self‐assembly in polar media due to the intermolecular ππ interaction between neighboring conjugated polymer backbones, where the self‐assembly behavior would be closely related to the pendant polyVE structure. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3318–3325  相似文献   

9.
We present herein a mild and rapid method to create diblock copolymer brushes on a silicon surface via photoinitiated “thiol‐ene” click reaction. The silicon surface was modified with 3‐mercaptopropyltrimethoxysilane (MPTMS) self‐assembled monolayer. Then, a mixture of divinyl‐terminated polydimethylsiloxane (PDMS) and photoinitiator was spin‐coated on the MPTMS surface and exposed to UV‐light. Thereafter, a mixture of thiol‐terminated polyethylene glycol (PEG) and photoinitiator were spin‐coated on the vinyl‐terminated PDMS‐treated surface, and the sequent photopolymerization was carried out under UV‐irradiation. The MPTMS, PDMS, and PEG layers were carefully identified by X‐ray photoelectron spectroscopy, atomic force microscopy, ellipsometry, and water contact angle measurements. The thickness of the polydimethylsiloxane‐block‐poly(ethylene glycol) (PDMS‐b‐PEG) diblock copolymer brush could be controlled by the irradiation time. The responsive behavior of diblock copolymer brushes treated in different solvents was also discussed. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
4‐acryloylmorpholine/4‐acryloylpiperidine statistical copolymers were synthesized by nitroxide mediated polymerization (NMP) with BlocBuilder unimolecular initiator in dimethylformamide solution at 120 °C. The copolymers had narrow molecular weight distributions (dispersity ? = 1.25–1.35, number average molecular weights M n = 8.5–13.7 kg mol?1). The copolymer microstructure was essentially statistical (reactivity ratios r 4AP = 0.81 ± 0.73, r 4AM = 0.73 ± 0.68 based on non‐linear fitting of the Mayo‐Lewis equation). Cloud point temperatures (CPT) in aqueous media were tuned from 11 °C to 92 °C, merely by adjusting the initial monomer composition. Using NMP permitted sharper control of the CPT transitions, compared to the similar copolymer made using conventional radical polymerization. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 2160–2170  相似文献   

11.
12.
The synthesis via copper(I)‐catalyzed azide alkyne cycloaddition (CuAAC) of three new monomer derivatives of N‐vinyl‐2‐pyrrolidone (VP) carrying cyclic pyrrolidine, piperidine, and piperazine groups and the corresponding copolymers with unmodified VP is shown. The systems bearing pyrrolidine and piperidine displayed both thermo‐ and pH‐response, which has not been reported previously for a polymer with polyvinylpyrrolidone (PVP) backbone. A broad modulation of the LCST with the copolymer composition and pH was observed in a temperature range 0–100 °C. The polymers carrying piperazine exhibited broad buffering regions and no thermosensitivity. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1098–1108  相似文献   

13.
Facile prepolymerization and postpolymerization functionalization approaches to prepare well‐defined fluorescent conjugated glycopolymers through Cu(I)‐catalyzed azide/alkyne “Click” ligation were explored. Two well‐defined carbazole‐based fluorescent conjugated glycopolymers were readily synthesized based on these strategies and characterized by 1H NMR, 13C NMR, IR spectra, and UV‐vis spectra. The “Click” ligation offers a very effective conjugation method to covalently attach carbohydrate residues to fluorescent conjugated polymers. In addition, the studies of carbohydrate–lectin interactions were performed by titration of concanavalin A (Con A) to D ‐glucose‐bearing poly(anthracene‐alt‐carbazole) copolymer P‐2 resulting in significant fluorescence quenching of the polymer due to carbohydrate–lectin interactions. When peanut agglutinin (PNA) was added, no distinct change in the fluorescent properties of P‐2 was observed. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2948–2957, 2009  相似文献   

14.
Homopolymerization and diblock copolymerization of 2‐hydroxypropyl acrylate (HPA) has been conducted using reversible addition fragmentation chain transfer (RAFT) chemistry in tert‐butanol at 80 °C. PHPA homopolymers were obtained with high conversions and narrow molecular weight distributions over a wide range of target degrees of polymerization. Like its poly(2‐hydroxyethyl methacrylate) isomer, PHPA homopolymer exhibits inverse temperature solubility in dilute aqueous solution, with cloud points increasing systematically on lowering the mean chain length. The nature of the end groups is shown to significantly affect the cloud point, whereas no effect of concentration was observed over the PHPA concentration range investigated. Various thermoresponsive PHPA‐based diblock copolymers were prepared via one‐pot syntheses in which the second block was either permanently hydrophilic or pH‐responsive. Preliminary studies confirmed that poly(ethylene oxide)‐poly(2‐hydroxypropyl acrylate) (PEO45‐PHPA48) and poly(2‐hydroxypropyl acrylate)‐ poly(2‐hydroxyethyl acrylate) (PHPA49‐PHEA68)diblock copolymers formed well‐defined PHPA‐core micelles in 10 mM sodium nitrate solution at 40 °C and 70 °C with mean hydrodynamic diameters of 20 nm and 35 nm, respectively. In contrast, most other PHPA‐based diblock copolymers investigated formed larger colloidal aggregates in 10 mM NaNO3 solution at elevated temperatures. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2032–2043, 2010  相似文献   

15.
pH‐ and temperature‐responsive poly(N‐isopropylacrylamide‐block?4‐vinylbenzoic acid) (poly(NIPAAm‐b‐VBA)) diblock copolymer brushes on silicon wafers have been successfully prepared by combining click reaction, single‐electron transfer‐living radical polymerization (SET‐LRP), and reversible addition‐fragmentation chain‐transfer (RAFT) polymerization. Azide‐terminated poly(NIPAAm) brushes were obtained by SET‐LRP followed by reaction with sodium azide. A click reaction was utilized to exchange the azide end group of a poly(NIPAAm) brushes to form a surface‐immobilized macro‐RAFT agent, which was successfully chain extended via RAFT polymerization to produce poly(NIPAAm‐b‐VBA) brushes. The addition of sacrificial initiator and/or chain‐transfer agent permitted the formation of well‐defined diblock copolymer brushes and free polymer chains in solution. The free polymer chains were isolated and used to estimate the molecular weights and polydispersity index of chains attached to the surface. Ellipsometry, contact angle measurements, grazing angle‐Fourier transform infrared spectroscopy, and X‐ray photoelectron spectroscopy were used to characterize the immobilization of initiator on the silicon wafer, poly(NIPAAm) brush formation via SET‐LRP, click reaction, and poly(NIPAAm‐b‐VBA) brush formation via RAFT polymerization. The poly(NIPAAm‐b‐VBA) brushes demonstrate stimuli‐responsive behavior with respect to pH and temperature. The swollen brush thickness of poly(NIPAAm‐b‐VBA) brush increases with increasing pH, and decreases with increasing temperature. These results can provide guidance for the design of smart materials based on copolymer brushes. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2677–2685  相似文献   

16.
Herein, we report the preparation of structured multistimuli‐responsive surfaces able to change reversibly both their chemical composition depending on the environment and their surface behavior by varying either/both the pH or/and the temperature. For that purpose, we took advantage of the surface segregation in homopolymer/diblock copolymer blends, composed of either polystyrene‐block‐poly(N,N′‐dimethylaminoethylmethacrylate) (PS‐b‐PDMAEMA) or polystyrene‐block‐poly (N,N′‐diethylaminoethylmethacrylate) (PS‐b‐PDEAEMA) and high molecular weight polystyrene used as a matrix. The variations of the surface composition as a function of the environment of exposure (air or water vapor) was investigated were investigated by XPS and contact angle measurements. The water‐annealed surfaces contain PDMAEMA or PDEAEMA at the surface and are additionally able to respond both to pH and temperature as demonstrated by the Wilhelmy technique. Both PDMAEMA and PDEAEMA can switch from a hydrophilic state to a collapsed hydrophobic state increasing the temperature above the LCST. More interestingly, as a result of the microphase separation of the block copolymers at the interface, the surfaces of the blends exhibit structuration. Thus, either micellar structures or “donut‐like” morphologies were obtained by using THF or toluene, respectively, as solvent. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1952–1961, 2010  相似文献   

17.
We present herein a mild and rapid method for the modular functionalization of polysaccharides. Several ene‐functional charged and neutral polysaccharides, that is, hyaluronic acid and dextran, were prepared by esterification of the hydroxyl groups with pentenoic anhydride. The modified polysaccharides were then reacted with six model mercaptans under UV light, leading to linear polymers modified with hydrophobic groups, peptides, or oligosaccharides as well as chemical hydrogels. The thiol‐ene coupling reactions were found to proceed with high efficiency in short reaction times and with nearly no degradation of the polysaccharide backbone. Moreover, they were carried out in aqueous media, without the use of any metal catalysts, enhancing the attractive nature of this process. Notably, we investigated whether it is feasible to prepare cell‐responsive hydrogels by sequential bioconjugation and cross‐linking of the polysaccharide backbone with a bioactive peptide and poly(ethylene glycol)‐dithiol, respectively. All together, these results highlight the potential of this coupling strategy for the modular functionalization of polysaccharides under click chemistry‐like conditions. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

18.
Azobenzene‐modified polyesters and poly(ester amide)s fitted with chiral, atropisomeric binaphthylene segments were prepared by a series of low‐temperature polycondensation reactions carried out in polar solvent media. When compared with their polyaramide counterparts studied earlier, these materials had significantly improved solubility behaviors and were readily dissolved by a wide range of organic solvents. In solution, each of these constructs underwent photoinduced oscillations in optical rotatory power when subjected to multiple UV‐light/visible‐light illumination cycles that drove trans?cis isomerization reactions along their polymer chains. Light‐regulated chiroptical perturbations were dependent on polymer backbone structures and were further modulated by well‐coordinated temperature fluctuations and by the nature of the solvent medium employed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 207–218, 2006  相似文献   

19.
Stimuli‐responsive hyperbranched polymers have attracted great attention in recent years because of their wide applications in biomedicine. Through proton‐transfer polymerization of triethanolamine and 1,2,7,8‐diepoxyoctane with the help of potassium hydride, a series of novel backbone thermo and pH dual‐responsive hyperbranched poly(amine‐ether)s were prepared successfully in one‐pot. The degrees of branching of the resulting polymers were at 0.40–0.49. Turbidity measurements revealed that hyperbranched poly(amine‐ether)s exhibited thermo and pH dual‐responsive properties in water. Importantly, these responsivities could be readily adjusted by changing the polymer composition as well as the polymer concentration in aqueous solution. Moreover, in vitro evaluation demonstrated that hyperbranched poly(amine‐ether)s showed low cytotoxicity and efficient cell internalization against NIH 3T3 cell lines. These results suggest that these backbone thermo and pH dual‐responsive hyperbranched poly(amine‐ether)s are promising materials for biomedicine. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

20.
Thermoreversible polymeric biomaterials are finding increased acceptance in tissue engineering applications. One drawback of the polymers is their synthetic nature, which does not allow direct interaction of mammalian cells with the polymers. This limitation may be alleviated by grafting arginine–glycine–aspartic acid (RGD) containing peptides onto the polymer backbone to facilitate interactions with cell‐surface integrins. Toward this goal, N‐isopropylacrylamide (NiPAM)‐based thermoreversible polymers containing amine‐reactive N‐acryloxysuccinimide (NASI) groups were synthesized. Conjugation of RGD‐containing peptides to polymers was demonstrated with 1H NMR spectroscopy and reverse‐phase high‐pressure liquid chromatography. The conjugation reaction was optimal at 4 °C and pH of 8.0, and increased with the increasing NASI content of polymers. With a peptide grafting ratio of 0.25 mol %, there was no significant change in the lower critical solution temperature of the polymers. Finally, the NASI‐containing polymers, cast as films, on tissue culture polystyrene, were shown to conjugate to RGD‐containing peptides and support C2C12 cell attachment. We conclude that NASI‐containing thermoreversible polymers are amenable for grafting biomimetic peptides to impart cell adhesiveness to the polymers. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3989–4000, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号