首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of donor‐π‐acceptor (D‐π‐A) conjugated copolymers ( PBDT‐AT, PDTS‐AT, PBDT‐TT , and PDTS‐TT ), based on benzo[1,2‐b:4,5‐c']dithiophene‐4,8‐dione (BDD) acceptor unit with benzodithiophene (BDT) or dithienosilole (DTS) as donor unit, alkylthiophene (AT) or thieno[3,2‐b]thiophene (TT) as conjugated π‐bridge, were designed and synthesized for application as donor materials in polymer solar cells (PSCs). Effects of the donor unit and π‐bridge on the optical and electrochemical properties, hole mobilities, and photovoltaic performance of the D‐π‐A copolymers were investigated. PSCs with the polymers as donor and PC70BM as acceptor exhibit an initial power conversion efficiency (PCE) of 5.46% for PBDT‐AT , 2.62% for PDTS‐AT , 0.82% for PBDT‐TT , and 2.38% for PDTS‐TT . After methanol treatment, the PCE was increased up to 5.91%, 3.06%, 1.45%, and 2.45% for PBDT‐AT, PDTS‐AT, PBDT‐TT , and PDTS‐TT , respectively, with significantly increased FF. The effects of methanol treatment on the photovoltaic performance of the PSCs can be ascribed to the increased and balanced carrier transport and the formation of better nanoscaled interpenetrating network in the active layer. The results indicate that both donor unit and π‐bridge are crucial in designing a D‐π‐A copolymer for high‐performance photovoltaic materials. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1929–1940  相似文献   

2.
A n‐type conjugated polymer containing naphthalene diimide (NDI) and 1,3,4‐thiadiazole (TZ) moieties, named PNTZ, has been synthesized and applied for all‐polymer solar cells (all‐PSCs). By the incorporation of TZ unit into the polymer main chains, the lowest unoccupied molecular orbital level of this polymer has been adjusted effectively. In addition, the electron‐acceptor PNTZ shows a broad absorption spectrum in the range of 300–700 nm, and possesses complementary absorption spectrum with the electron‐donor PTB7‐Th. On the basis of PNTZ as the acceptor and PTB7‐Th as the donor, the all‐PSCs are fabricated. After optimization, the well blend morphologies with a continuous D/A interpenetrating network are observed and the best all‐PSC device exhibits a power conversion efficiency of 4.35% with a high short‐circuit current density of 13.26 mA cm?2. This research demonstrates that the TZ‐containing polymer PNTZ is a promising non‐fullerene acceptor for high efficiency all‐PSCs. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55 , 990–996  相似文献   

3.
Two new side‐chain donor–acceptor (D‐A)‐based triphenylamine‐alt‐benzo[1,2‐b:4,5‐b′]dithiophene (TPA‐alt‐BDT) copolymers ( P1 and P2 ) with pendant benzothiadiazole (BT)/diketopyrrolopyrrole (DPP) in TPA unit were synthesized by Stille coupling polymerization. Their thermal, photophysical, electrochemical, blend film morphology and photovoltaic properties were investigated. Efficient bulk heterojunction polymer solar cells (PSCs) were obtained by solution process using both copolymers as donor materials and PC71BM as acceptor. The maximum power conversion efficiency (PCE) of 3.17% with a highest open‐circuit voltage (Voc) of 0.86V was observed in the P1 ‐based PSCs, while the maximum short‐circuit current (Jsc) of 10.77 mA cm?2 was exhibited in the P2 ‐based PSCs under the illumination of AM 1.5, 100 mW cm?2. The alternating binary donor units and pending acceptor groups played a significant role in tuning photovoltaic properties for this class of the side‐chain D–A‐based copolymers. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4103–4110  相似文献   

4.
A solution‐processed acceptor‐π‐donor‐π‐acceptor (A‐π‐D‐π‐A) type small molecule, namely DCATT, has been designed and synthesized for the application as donor material in organic solar cells. The fused aromatic unit thieno[3,2‐b]thiophene (TT) flanked with thiophene is applied as π bridge, while 4,8‐bisthienyl substituted benzodithiophene (BDT) and 2‐ethylhexyl cyanoacetate are chosen as the central building block and end group, respectively. Introduction of fused ring to the small molecule enhances the conjugation length of the main chain, and gives a strong tendency to form π–π stacking with a large overlapping area which favors to high charge carrier transport. Small‐molecule organic solar cells based on blends of DCATT and fullerene acceptor exhibit power conversion efficiencies as high as 5.20 % under the illumination of AM 1.5G, 100 mW cm?2.  相似文献   

5.
A new donor–acceptor (D–A) conjugated copolymer based on benzo[1,2‐b:4,5‐b′]dithiophene (BDT) and thieno[3,4‐c]pyrrole‐4,6‐dione (TPD) was synthesized via a Stille cross‐coupling reaction. A highly conjugated thiophene‐based side group, tris(thienylenevinylene) (TTV), was incorporated into each BDT unit to generate the two‐dimensional D–A copolymer (PBDT‐TTV). An alkoxy‐substituted BDT‐based TPD copolymer (PBDT‐OR) was synthesized using the same polymerization method for comparison. PBDT‐TTV thin films produced two distinct absorption peaks. The shorter wavelength absorption (458 nm) was attributed to the BDT units containing the TTV group, and the longer wavelength band (567–616 nm) was attributed to intramolecular charge transfer between the BDT donor and the TPD acceptor. The highest occupied molecular orbital energy levels of PBDT‐OR and PBDT‐TTV were calculated to be −5.53 and −5.61 eV, respectively. PBDT‐TTV thin films harvested a broad solar spectrum covering the range 300–700 nm. A comparison with the PBDT‐OR films revealed stronger interchain π–π interactions in the PBDT‐TTV films and, thus, a higher hole mobility. A polymer solar cell device prepared using PBDT‐TTV as the active layer was found to exhibit a higher power conversion efficiency than a device prepared using PBDT‐OR under AM 1.5 G (100 mW/cm2) conditions. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 653–660  相似文献   

6.
Two novel main chain polymeric metal complexes containing 8‐hydroxyquinoline europium complexes and phenylethyl or fluorene units: 1,4‐Dioctyloxy‐2,5‐bis[2‐(8‐hydroxyquinoline)‐vinyl]‐benzene Eu(III) (3) and 2,7‐bis[2‐(8‐hydroxyquinoline)‐vinyl]‐9,9′‐diocthylfluorene Eu(III) (4) with donor–acceptor‐π‐conjugated structure (D‐π‐A) have been synthesized and investigated as dye sensitizers for dye‐sensitized solar cells dyes (DSSCs). They have been determined and studied by FT‐IR, TGA, DSC, GPC, Elemental analysis, UV–vis absorption spectroscopy, photoluminescence spectroscopy, cyclic voltammetry, and application in dye‐sensitized solar cells (DSSCs) as dye sensitizers. On the basis of optimized dye and molecular structure, they have shown solar‐to‐electricity conversion efficiency 2.25% for 3 (Jsc = 4.77 mA cm?2, Voc = 630 mV, FF = 0.75) and 3.04% for 4 (Jsc = 6.33 mA cm?2, Voc = 640 mV, FF = 0.75), under the illumination of AM1.5G, 100 mW/cm2. The IPCE of 3 and 4 are 30% and 46% at 400 nm, respectively. Besides, they showed good stabilities with thermal decomposition temperatures at 280 °C and 225 °C, respectively, which are suitable for DSSCs. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1943–1951, 2010  相似文献   

7.
A series of organic dyes were prepared that displayed remarkable solar‐to‐energy conversion efficiencies in dye‐sensitized solar cells (DSSCs). These dyes are composed of a 4‐tert‐butylphenylamine donor group (D), a cyanoacrylic‐acid acceptor group (A), and a phenylene‐thiophene‐phenylene (PSP) spacer group, forming a D‐π‐A system. A dye containing a bulky tert‐butylphenylene‐substituted carbazole (CB) donor group showed the highest performance, with an overall conversion efficiency of 6.70 %. The performance of the device was correlated to the structural features of the donor groups; that is, the presence of a tert‐butyl group can not only enhance the electron‐donating ability of the donor, but can also suppress intermolecular aggregation. A typical device made with the CB‐PSP dye afforded a maximum photon‐to‐current conversion efficiency (IPCE) of 80 % in the region 400–480 nm, a short‐circuit photocurrent density Jsc=14.63 mA cm?2, an open‐circuit photovoltage Voc=0.685 V, and a fill factor FF=0.67. When chenodeoxycholic acid (CDCA) was used as a co‐absorbent, the open‐circuit voltage of CB‐PSP was elevated significantly, yet the overall performance decreased by 16–18 %. This result indicated that the presence of 4‐tert‐butylphenyl substituents can effectively inhibit self‐aggregation, even without CDCA.  相似文献   

8.
Four new type II organic dyes with D‐π‐A structure (donor‐π‐conjugated‐acceptor) and two typical type II sensitizers based on catechol as reference dyes are synthesized and applied in dye sensitized solar cells (DSCs). The four dyes can be adsorbed on TiO2 through hydroxyl group directly. Electron injection can occur not only through the anchoring group (hydroxyl group) but also through the electron‐withdrawing group (? CN) located close to the semiconductor surface. Experimental results show that the type II sensitizers with a D‐π‐A system obviously outperform the typical type II sensitizers providing much higher conversion efficiency due to the strong electronic push‐pull effect. Among these dyes, LS223 gives the best solar energy conversion efficiency of 3.6%, with Jsc=7.3 mA·cm?2, Voc=0.69 V, FF=0.71, the maximum IPCE value reaches 74.9%.  相似文献   

9.
《中国化学》2017,35(10):1559-1568
The donor‐π‐conjugated‐acceptor (D‐π‐A) structure is an important design for the luminescent materials because of its diversity in the selections of donor, π‐bridge and acceptor groups. Herein, we demonstrate two examples of D‐π‐A structures capable to finely modulate the excited state properties and arrangement of energy levels, TPA‐AN‐BP and CZP‐AN‐BP , which possess the same acceptor and π‐bridge but different donor. The investigation of their photophysical properties and DFT calculation revealed that the D‐π‐A structure with proper donor, π‐bridge and acceptor can result in separation of frontier molecular orbitals on the corresponding donor and acceptor with an obvious overlap on the π‐bridge, resulting in a hybridized local and charge‐transfer (HLCT ) excited state with high photoluminescent (PL ) efficiencies. Meanwhile, their singlet and triplet states are arranged on corresponding moieties with large energy gap between T2 and T1 , and a small energy gap between S1 and T2 , which favor the reverse intersystem crossing (RISC ) from high‐lying triplet levels to singlet levels. As a result, the sky‐blue emission non‐doped OLED based on the TPA‐AN‐BP reached maximum external quantum efficiency (EQE ) of 4.39% and a high exciton utilization efficiency (EUE ) of 77%. This study demonstrates a new strategy to construct highly efficient OLED materials.  相似文献   

10.
New porphyrin sensitizers based on donor–π‐acceptor (D‐π‐A) approach have been designed, synthesized, characterized by various spectroscopic techniques and their photovoltaic properties explored. N,N′‐Diphenylamine acts as donor, the porphyrin is the π‐spacer, and either carboxylic acid or cyanoacryclic acid acts as acceptor. All compounds were characterized by using 1H NMR spectroscopy, ESI‐MS, UV–visible emission spectroscopies as well as electrochemical methods. The presence of aromatic groups between porphyrin π‐plane and acceptor group push the absorption of both Soret and Q‐bands of porphyrin towards the red region. The electrochemical properties suggests that LUMO of these sensitizers above the TiO2 conduction band. Finally, the device was fabricated using liquid redox electrolyte (I?/I3?) and its efficiency was compared with that of a leading sensitizer.  相似文献   

11.
Three electron donor‐?? bridge‐electron acceptor (D‐π‐A) organic dyes bearing two carboxylic acid groups were applied to dye‐sensitized solar cells (DSSC) as sensitizers, in which one triphenylamine or modified triphenylamine and two rhodanine‐3‐acetic acid fragments act as D and A, respectively. It was found that the introduction of t‐butyl or methoxy group in the triphenylamine subunit could lead to more efficient photoinduced intramolecular charge transfer, thus improving the overall photoelectric conversion efficiency of the resultant DSSC. Under global AM 1.5 solar irradiation (73 mW·cm?2), the dye molecule based on methoxy‐substituted triphenylamine achieved the best photovoltaic performance: a short circuit photocurrent density (Jsc) of 12.63 mA·cm?2, an open circuit voltage (Voc) of 0.55 V, a fill factor (FF) of 0.62, corresponding to an overall efficiency (η) of 5.9%.  相似文献   

12.
Due to the ease of tuning its redox potential, the cobalt‐based redox couple has been extensively applied for highly efficient dye‐sensitized solar cells (DSSCs) with extraordinarily high photovoltages. However, a cobalt electrolyte needs particular structural changes in the organic dye components to obtain such high photovoltages. To achieve high device performance, specific requirements in the molecular tailoring of organic sensitizers still need to be met. Besides the need for large electron donors, studies of the auxiliary acceptor segment of donor–acceptor–π‐acceptor (D‐A‐π‐A) organic sensitizers are still rare in molecular optimization in the context of cobalt electrolytes. In this work, two novel organic D‐A‐π‐A‐type sensitizers ( IQ13 and IQ17 ) have been developed and exploited in cobalt‐ and iodine‐based redox electrolyte DSSCs, specifically to provide insight into the effect of π‐bridge modification in different electrolytes. The investigation has been focused on the additional electron‐withdrawing acceptor capability with grafted long alkoxy chains. Optoelectronic transient measurements have indicated that IQ17 containing a pyrido[3,4‐b]pyrazine moiety bearing long alkoxyphenyl chains is more suitable for application in cobalt‐based DSSCs.  相似文献   

13.
Dipolar metal‐free sensitizers (D‐π‐A; D=donor, π=conjugated bridge, A=acceptor) consisting of a dithiafulvalene (DTF) unit as the electron donor, a benzene, thiophene, or fluorene moiety as the conjugated spacer, and 2‐cyanoacrylic acid as the electron acceptor have been synthesized. Dimeric congeners of these dyes, (D‐π‐A)2, were also synthesized through iodine‐induced dimerization of an appropriate DTF‐containing segment. Dye‐sensitized solar cells (DSSCs) with the new dyes as the sensitizers have cell efficiencies that range from 2.11 to 5.24 %. In addition to better light harvesting, more effective suppression of the dark current than the D‐π‐A dyes is possible with the (D‐π‐A)2 dyes.  相似文献   

14.
Two D–π‐A′–A regioisomers (A‐IDT‐D and D‐IDT‐A) featuring 4,4′‐di‐p‐tolyl‐4 H‐indeno[1,2‐b]‐thiophene as a π linker (π) between the diarylamino donor (D) and the pyrimidine–cyanoacrylic acid acceptor (A′–A) have been successfully synthesized and characterized as efficient sensitizers for the dye‐sensitized solar cells (DSSCs). The different arrangements of the D and A′–A blocks on the unsymmetrical indenothiophene (IDT) core render the dipole of IDT being along (A‐IDT‐D) or opposite (D‐IDT‐A) to the direction of intramolecular (donor‐to‐acceptor) charge transfer, and thus induce variations in the physical properties. The experimental observations correlated well with the theoretical analyses, clearly revealing the trade‐off between the molar extinction coefficient (ε) and the S0→S1 transition energy. As a result, a superior ε value was observed for D‐IDT‐A, whereas a bathochromic shift in the absorption occurred in A‐IDT‐D. The larger ε value of D‐IDT‐A together with its more favorable energy level relative to TiO2 led to a higher power conversion efficiency of 7.41 % for the D‐IDT‐A‐based DSSC, retaining approximately 95 % of the N719‐based DSSC efficiency. This work manifests the clear structure–property relationship for the case of donor and acceptor components being connected by an unsymmetrical π linker and provides insights for molecular engineering of organic sensitizers.  相似文献   

15.
Two D–π–A copolymers, based on the benzo[1,2‐b:4,5‐b′]‐dithiophene (BDT) as a donor unit and benzo‐quinoxaline (BQ) or pyrido‐quinoxaline (PQ) analog as an acceptor (PBDT‐TBQ and PBDT‐TPQ), were designed and synthesized as a p‐type material for bulk heterojunction (BHJ) photovoltaic cells. When compared with the PBDT‐TBQ polymer, PBDT‐TPQ exhibits stronger intramolecular charge transfer, showing a broad absorption coverage at the red region and narrower optical bandgap of 1.69 eV with a relatively low‐lying HOMO energy level at ?5.24 eV. The experimental data show that the exciton dissociation efficiency of PBDT‐TPQ:PC71BM blend is better than that in the PBDT‐TBQ:PC71BM blend, which can explain that the IPCE spectra of the PBDT‐TPQ‐based solar cell were higher than that of the PBDT‐TBQ‐based solar cell. The maximum efficiency of PBDT‐TPQ‐based device reaches 4.40% which is much higher than 2.45% of PBDT‐TBQ, indicating that PQ unit is a promising electron‐acceptor moiety for BHJ solar cells. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1822–1833  相似文献   

16.
A novel D–A1–D–A2 copolymer denoted as P1 containing two electron withdrawing units based on benzothiadiazole (BT) and 9‐(2‐octyldodecyl)?8H‐pyrrolo[3,4‐b] bisthieno[2,3‐f:3′,2′‐h]quinoxaline‐8,10(9H)–dione (PTQD) units was synthesized and characterized. The resulting copolymer exhibits a broad‐absorption spectrum, relatively deep lying HOMO energy level (?5.44 eV) and narrow optical bandgap (1.50 eV). Bulk heterojunction (BHJ) polymer solar cells (PSCs) based on P1 as donor and PC71BM as acceptor with optimized donor to acceptor weight ratio of 1:2 and processed with DIO/CB solvent showed good photovoltaic performance with power conversion efficiency of 6.21% which is higher than that of the device processed without solvent additive (4.40%). The absorption and morphology investigations of the active layers indicated that structural and morphological changes were induced by the solvent additive. This higher power conversion efficiency could be mainly attributed to the absorption enhancement and improved charge transported in the active layer induced by the better nanoscale morphology of the active layer. This study demonstrated that a copolymer with two different acceptor moieties in the backbone may be promising candidate as donor copolymer for solution processed BHJ PSCs. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 155–168  相似文献   

17.
A series of three new low bandgap donor–acceptor–donor–acceptor/ (D–A–D–A/) polymers have been successfully synthesized based on the combination of isoindigo as the electron‐deficient acceptor and 3,4‐ethylenedioxythiophene as the electron‐rich donor, followed by CH‐arylation with different acceptors (4,7‐dibromo[c][1,2,5]‐(oxa, thia, and/or selena)diazole ( 4a‐c )). These polymers were used as donor materials for photovoltaic applications. All of the polymers are highly stable and show good solubility in chlorinated solvents. The highest power conversion efficiency of 1.6% was achieved in the bulk heterojunction photovoltaic device that consisted of poly ((E)?6‐(7‐(benzo‐[c][1,2,5]‐thiadiazol‐4‐yl)?2,3‐dihydrothieno‐[3,4‐b][1,4]dioxin‐5‐yl)?6′‐(2,3‐dihydrothieno‐[3,4‐b][1,4]‐dioxin‐5‐yl)?1,1′‐bis‐(2‐octyldodecyl)‐[3,3′‐biindolinylidene]‐2,2′‐dione) as the donor and PC61BM as the acceptor, with a short‐circuit current density (Jsc) of 8.10 mA/cm2, an open circuit voltage (Voc) of 0.56 V and a fill factor of 35%, which indicates that these polymers are promising donors for polymer solar cell applications. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2926–2933  相似文献   

18.
A new benzodithiophene (BDT)‐based polymer, poly(4,8‐bis(2‐ethylhexyloxy)benzo[1,2‐b:4,5‐b′]dithiophene vinylene) (PBDTV), was synthesized by Pd‐catalyzed Stille‐coupling method. The polymer is soluble in common organic solvents and possesses high thermal stability. PBDTV film shows a broad absorption band covering from 350 nm to 618 nm, strong photoluminescence peaked at 545 nm and high hole mobility of 4.84 × 10?3 cm2/Vs. Photovoltaic properties of PBDTV were studied by fabricating the polymer solar cells based on PBDTV as donor and PC70BM as acceptor. With the weight ratio of PBDTV: PC70BM of 1:4 and the active layer thickness of 65 nm, the power conversion efficiency of the device reached 2.63% with Voc = 0.71 V, Isc = 6.46 mA/cm2, and FF = 0.57 under the illumination of AM1.5, 100 mW/cm2. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1822–1829, 2010  相似文献   

19.
Three narrow‐band‐gap conjugated copolymers based on indenofluorene and triphenylamine with pendant donor‐π‐acceptor chromophores were successfully synthesized by post‐functionalization approach. All the polymers have good solubility in common solvents and excellent thermal stability. The photophysical properties, energy levels and band gaps of the polymers were well manipulated by introducing different acceptor groups onto the end of their conjugated side chains. By using different acceptor groups, the band gaps of the polymers were narrowed from 1.86 to 1.53 eV by lowering their lowest unoccupied molecular orbital levels, whereas their relatively deep highest occupied molecular orbital levels of approximately ?5.35 eV were maintained. Bulk‐heterojunction solar cells with these polymers as electron donors and (6,6)‐phenyl‐C71‐butyric acid methyl ester as acceptor showed power conversion efficiencies as high as 3.1% and high open circuit voltages more than 0.88 eV. The relationships between the performance and film morphology, energy levels, charge mobilities were discussed. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

20.
Four D‐π‐A‐type nonionic oxime sulfonate photoacid generators (PAGs) have been designed and synthesized for use in light‐emitting diode (LED) excitable cationic photoinitiators, in which N,N‐diphenylamino was used as electron donor with trifluoroacetophenone‐based oxime sulfonates (trifluoromethanoesulfonate and p‐toluenesulfonate) as electron acceptor and substituted fluorene and biphenyl groups as the π‐conjugated systems. PAG‐Ben‐Tol (with biphenyl and p‐toluenesulfonate) and PAG‐Flu‐Tol (with fluorene and p‐toluenesulfonate) showed high quantum yields of photoacid generation (0.33–0.50) and very good thermal stability (over 250 °C). The absorbance spectra of these PAGs were consistent with the emission spectra of commercially gained UV–visible LED light sources. The potential of these PAGs for cationic photoinitiators was tested in two cationic monomer systems. These PAGs needed low light intensity and low concentration for photopolymerization with high conversions of monomer, for example, over 80%, gained at 3.0 mW cm−2 from 365 to 470 nm LEDs. The photochemical mechanisms of these PAGs are comprehensively investigated and discussed in detail. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1146–1154  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号