首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A quantitative study on local aromaticity has been performed on a series of mono‐ and di‐substituted biheterocycles (quinoline, isoquinoline, quinoxaline, quinazoline). Three electronically based indices (PDI, ATI, and FLU) have been employed to investigate the substituent effect on the π‐electron delocalization in both heterocycle and benzenoid rings. Three typical substituents (Cl, OCH3, and CN) with different inductive and resonance power have been selected. Generally, substituent causes a reduction in aromaticity irrespective of whether it is electron attracting or electron donating. It is shown that the maximum aromaticity exhibits a similar trend of Cl > CN > OCH3 for all the studied rings. Moreover, it is found that the substituent situation with respect to the heteroatom has a significant influence on the aromaticity. It results from our study that in di‐substituted derivatives, irrespective of whether the two substituents form a meta or para isomer, they preferably choose the position which leads to the maximum aromaticity character. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
3.
Molecular geometry of 10 isomeric nitronaphtholate ions (excluding peri‐ and ortho‐type substituted systems), 1‐ and 2‐naphtholate ions, 1‐ and 2‐nitronaphthalene, meta‐ and para‐nitrophenolate, phenolate, and nitrobenzene were optimized at B3LYP/6‐311G** level of approximation. Substituent effect stabilization energy (SESE), geometry‐based aromaticity index HOMA, magnetism‐based indices NICS, NICS(1), NICS(1)zz, and parameters characterizing Bond Critical Points (BCP) (ρ, ?2ρ, ellipticity, ion/cov) of the Bader AIM theory were used to characterize transmitting properties for substituent effect through the naphthalene moiety. It results from our study that the studied systems could be clearly divided into two groups, (i) a para‐type group, where the intramolecular charge transfer between the π‐electron donating and π‐electron accepting substituents can be described by canonical forms with charge separation (as in the case of para‐nitrophenolate) and (ii) a meta‐type group, where this transfer requires using canonical forms with double charge separation (as in the case of meta‐nitrophenolate). Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
For studying the substituent effects on the νmax of substituted benzylideneanilines (XBAYs) systematically, 12 samples of 3,3′‐disubstituted XBAYs and 52 samples of multi‐substituted XBAYs were synthesized, and the substituent effects on their νmax were investigated in this paper. A modified regression equation quantifying the νmax of 4,4′/4,3′/3,4′/3,3′‐disubstituted and multi‐substituted XBAYs (shown as Eq. 3 ) was obtained. The results showed that the substituent effects on the νmax of 3,3′‐substituted and multi‐substituted XBAYs became more complicated. In Eq. 3 , the contributions of the meta‐parameters to the νmax of XBAYs were different from those of the corresponding para‐parameters. For the substituent cross‐interaction effects, there is no difference whatever the substituents are at meta‐position or para‐position. Compared with Eq. 1 , Eq. 3 obtained in this paper has a wider application and more accuracy in quantifying the νmax of substituted XBAYs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
The thermochemistry of organometallic complexes in solution and in the gas phase has been an area of increasing research interest. In this paper, the Fe–O and Fe–S homolytic bond dissociation energies [ΔHhomo(Fe–O)'s and ΔHhomo(Fe–S)'s] of two series of meta‐substituted phenoxydicarbonyl(η5‐cyclopentadienyl) iron [m‐G‐C6H4OFp ( 1 )] and (meta‐substituted benzenethiolato)dicarbonyl(η5‐cyclopentadienyl) iron [m‐G‐C6H4SFp ( 2 )] were studied using Hartree–Fock and density functional theory methods with large basis sets. In this study, Fp is (η5‐C5H5)Fe(CO)2, and G are NO2, CN, COMe, CO2Me, CF3, Br, Cl, F, H, Me, MeO, and NMe2. The results show that Tao–Perdew–Staroverov–Scuseria and Minnesota 2006 functionals can provide the best price/performance ratio and accurate predictions of ΔHhomo(Fe–O)'s and ΔHhomo(Fe–S)'s. The polar effects of the meta substituents show that the dominant role to the magnitudes of ΔΔHhomo(Fe–O)'s or ΔΔHhomo(Fe–S)'s. σα·, σc· values for meta substituents are all related to polar effects. Spin‐delocalization effects of the meta substituents in ΔΔHhomo(Fe–O)'s and ΔΔHhomo(Fe–S)'s are small but not necessarily zero. Molecular effects rather than ΔΔHhomo(Fe–O)'s and ΔΔHhomo(Fe–S)'s are more suitable indexes for the overall substituent effects on ΔHhomo(Fe–O)'s and ΔHhomo(Fe–S)'s. The meta substituent effects of meta‐electron‐withdrawing groups on the Fe–S bonds are much stronger than those on the Fe–O bonds. For meta‐electron‐donating groups, the meta substituent effects have the comparable magnitudes between series 1 and 2 . ΔΔHhomo(Fe–O)'s ( 1 ) and ΔΔHhomo(Fe–S)'s ( 2 ) conform to the captodative principle. Insight from this work may help the design of more effective catalytic processes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
The optical properties of several azobenzene derivatives were modulated by varying the dipole moments and conjugation lengths of the D‐π‐A systems. The relationship between the structure and absorption spectrum and polarizability was studied in the gas phase, THF and MeOH solutions, respectively, by using the density functional theory. The calculated absorption spectra and second‐order polarizabilities are in good agreement with the available experimental observations. In comparison with the D‐π‐A monomer, the H‐shaped D‐π‐A dimer almost doubles the dipole moments and hence increases the second‐order polarizabilities, without a significant shift in the maximum absorption bands. The addition of another azobenzol group between electron‐donating and ‐accepting groups increases the second‐order polarizabilities by 4–6 times, but leads to an evident red‐shift of about 65–80 nm in spectra. The relative second‐order polarizability of the halogen‐substituted derivatives is in the sequence of ? CF3 > ? F > ? Cl > ? Br, without obvious substituent effects on the optical transparency. The D‐π‐A chromophores with the strong electron‐donating (amino) and ‐accepting (acetyl) substituent present the larger second‐order polarizabilities, at the cost of about 20 nm red‐shift of the maximum absorption lengths relative to the halogen‐substituted species. It is also demonstrated that both the linear and nonlinear optical properties augment with the increase in solvent polarity, accompanied by a red‐shift in the wavelengths of maximum absorption by about 18 and 23 nm, respectively, in THF and MeOH solutions. The changes in optical properties upon the structural modifications are further rationalized by the electronic structures of various H‐shaped dimers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
The electronic (UV‐vis) and resonance Raman (RR) spectra of a series of para‐substituted trans‐β‐nitrostyrenes were investigated to determine the influence of the electron donating properties of the substituent (X = H, NO2, COOH, Cl, OCH3, OH, N(CH3)2, and O) on the extent of the charge transfer to the electron‐withdrawing NO2 group directly linked to the ethylenic (C = C) unit. The Raman spectra and quantum chemical calculations show clearly the correlation of the electron donating power of the X group with the wavenumbers of the νs(NO2) and ν (C = C)sty normal modes. In conditions of resonance with the lowest excited electronic state, one observes for X = OH and N(CH3)2 that the symmetric stretching of the NO2, νs(NO2), is the most substantially enhanced mode, whereas for X = O, the chromophore is extended over the whole molecule, with substantial enhancement of several carbon backbone modes. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Optimization of CH?F? complexes of exo‐substituted pentafulvene and meta‐substituted and para‐substituted benzene (substituents: NMe2, NHMe, NH2, NHOH, OH, OMe, Br, Cl, F, Me, CCH, CF3, CONH2, COMe, CHO, NO2, NO, and CN) have been performed at the density functional theory level by using Becke hybrid B3LYP functional with 6‐311++G(d,p) basis set. The acidity of the ring CH bond in benzene and fulvene are of similar magnitude, whereas the acidity of the fulvene exocyclic CH2 group is significantly higher. Various properties based on the H?F? hydrogen bond (bond length, electron density at BCP, and bond dissociation energy), and the whole molecule (HOMA, sEDA, pEDA, substituent active region, and substituent effect stabilization energy) were analyzed and compared between the fulvene and benzene systems. Sensitivity of the ring CH?F? hydrogen bond and other substituent dependent properties to substituent effect is substantially greater in fulvene than that of benzene derivatives. In fulvene, the 3‐position is more sensitive than the 4‐position. The sEDA and pEDA parameters used to measure sigma‐electron and pi‐electron excess/deficiency of the ring are mutually correlated for the studied systems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
A new merocyanine dye, 1,3‐Dimethyl‐5‐{(thien‐2‐yl)‐[4‐(1‐piperidyl)phenyl]methylidene}‐ (1H, 3H)‐pyrimidine‐2,4,6‐trione 3 , has been synthesized by condensation of 2‐[4‐(piperidyl)benzoyl]thiophene 1 with N,N′‐dimethyl barbituric acid 2 . The solvatochromic response of 3 dissolved in 26 solvents of different polarity has been measured. The solvent‐dependent long‐wavelength UV/Vis spectroscopic absorption maxima, vmax, are analyzed using the empirical Kamlet–Taft solvent parameters π* (dipolarity/polarizability), α (hydrogen‐bond donating capacity), and β (hydrogen‐bond accepting ability) in terms of the well‐established linear solvation energy relationship (LSER): (1) The solvent independent coefficients s , a , and b and (vmax)0 have been determined. The McRae equation and the empirical solvent polarity index, ET(30) have been also used to study the solvatochromism of 3 . Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
Three new unsymmetrical isomeric diarylethenes having a methoxyl substituent at ortho‐, meta‐, and para‐position of the terminal benzene ring, namely 1‐(2,5‐dimethyl‐3‐thienyl)‐2‐[2‐methyl‐5‐(2‐methoxylphenyl)‐3‐thienyl]perfluorocyclopentene ( 1o ), 1‐(2,5‐dimethyl‐3‐thienyl)‐2‐[2‐methyl‐5‐(3‐methoxylphenyl)‐3‐thienyl]perfluorocyclopentene ( 2o ), and 1‐(2,5‐dimethyl‐3‐ thienyl)‐2‐[2‐methyl‐5‐(4‐methoxylphenyl)‐3‐thienyl]perfluorocyclopentene ( 3o ), have been synthesized. The substituent position effect of methoxyl group on their properties, including photochromism and fluorescence both in hexane solution and in PMMA film, and their electrochemical properties, were investigated in detail. These diarylethenes showed good photochromism both in solution and in PMMA film. For the same photochromic diarylethene backbone, the electron‐ donating methoxyl substituent can effectively depress the cyclization quantum yields and increase the cycloreversion quantum yields compared to those of diarylethenes bearing chlorine atoms reported previously. Diarylethenes 1o – 3o showed clear fluorescent switches by photoirradiation both in hexane and in PMMA film. In addition, cyclic voltammetry tests showed that the electron‐donating methoxyl group at different position on the terminal benzene ring had a significant effect on the electrochemical properties of these isomeric diarylethenes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, 72 samples of disubstituted benzylideneanilines were all synthesized, and their UV data were measured in anhydrous ethanol. In the study on the UV energy of the titled compounds with single substituent changed, for the effect of the aniline substituent Y on the UV wavenumbers, its UV data can be correlated with a dual‐parameter equation; for the effect of benzylidene substituent X on the UV data, its UV energy can be correlated with a single‐parameter equation (Y is an electron‐withdrawing group and H) or a dual‐parameter equation (Y is an electron‐donating group). In the study on the UV energy of model compounds with double substituents changed, a correlation equation between the UV absorption wavenumbers and substituent constants and σp, was obtained. For 72 samples of 4,4′‐disubstituted benzylideneanilines, the correlation coefficient was 0.9876, and the standard deviation s was only 358.46 cm–1. The equation can be used to predict well the UV energy of BA derivatives. It was found that Δσ2 is a better parameter than σXY to scale the substituent cross‐interaction effect on the UV wavenumbers of benzylideneanilines molecules. The results implied that the law of substituent effect on the UV energy of titled compounds is different from that of substituted stilbenes, and it is helpful to understand the effect of substituent effects on the chemical and physical properties of conjugated compounds with an imine bridging group (C = N) or a nonplanar parent. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
When pyridine is para substituted to the nitrogen atom, the intensity of the long wavelength electronic transition is strongly decreased compared to the ortho and meta derivatives. N belonging to the ring, plays the part of a donating center when a strong electron withdrawing substituent is in the para position, and the part of an attracting center when faced to a donating substituent. the local transition moment vector of N, is in both cases opposed to the vector of the substituent. Furthermore, the π HOMO is priviledged (instead of the two highest π MO in benzene), and this HOMO does not allow a strong interaction with the substituent in the para position.  相似文献   

13.
One of the most fundamental properties in chemistry is the bond dissociation energy, the energy required to break a specific bond of a molecule. In this paper, the Fe–N homolytic bond dissociation energies [ΔHhomo(Fe–N)'s] of 2 series of (meta‐substituted anilinyl)dicarbonyl(η5‐cyclopentadienyl) iron [m‐G‐C6H4NHFp ( 1 )] and (meta‐substituted α‐acetylanilinyl)dicarbonyl(η5‐cyclopentadienyl) iron [m‐G‐C6H4N(COMe)Fp ( 2 )] were studied using density functional theory methods with large basis sets. In this study, Fp is (η5‐C5H5)Fe(CO)2, and G is NO2, CN, COMe, CO2Me, CF3, Br, Cl, F, H, Me, MeO, and NMe2. The results show that Tao‐Perdew‐Staroverov‐Scuseria, Minnesota 2006, and Becke's power‐series ansatz from 1997 with dispersion corrections functionals can provide the best price/performance ratio and accurate predictions of ΔHhomo(Fe–N)'s. The ΔΔHhomo(Fe–N)'s ( 1 and 2 ) conform to the captodative principle. The polar effects of the meta‐substituents show the dominant role to the magnitudes of ΔΔHhomo(Fe–N)'s. σα· and σc· values for meta‐substituents are all related to polar effects. Spin‐delocalization effects of the meta‐substituents in ΔΔHhomo(Fe–N)'s are small but not necessarily zero. RE plays an important role in determining the net substituent effects on ΔHhomo(Fe–N)'s. Insight from this work may help the design of more effective catalytic processes.  相似文献   

14.
The effects of substituents on the stability of 3‐substituted(X) bicyclo[1.1.1]pent‐1‐yl cations (3) and 4‐substituted(X) bicyclo[2.2.1]hept‐1‐yl cations (4), for a set of substituents (X = H, NO2, CN, NC, CF3, CHO, COOH , F, Cl, HO, NH2, CH3, SiH3, Si(CH3)3, Li, O?, and NH3+) covering a wide range of electronic substituent effects were calculated using the DFT theoretical model at the B3LYP/6‐311 + G(2d,p) and B3LYP/6‐31 + G (d) levels of theory, respectively. Linear regression analysis was employed to explore the relationship between the calculated relative hydride affinities (ΔE, kcal/mol) of the appropriate isodesmic reactions for 3/4 and polar field/group electronegativity substituent constants (σF and σχ, respectively). The analysis reveals that the ΔE values for both systems are best described by a combination of both substituent constants. The result highlights the importance of the σχ dependency of charge delocalization in these systems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
The effects of substituents on the stability of 4‐substituted(X) cub‐1‐yl cations ( 2 ), as well as the benchmark 4‐substituted(X) bicyclo[2.2.2]oct‐1‐yl cation systems ( 7 ), for a set of substituents (X = H, NO2, CN, NC, CF3, COOH , F, Cl, HO, NH2, CH3, SiH3, Si(CH3)3, Li, O?, and NH) covering a wide range of electronic substituent effects were calculated using the DFT theoretical model at the B3LYP/6‐311 + G(2d,p) level of theory. Linear regression analysis was employed to explore the relationship between the calculated relative hydride affinities (ΔE, kcal/mol) of the appropriate isodesmic reactions for 2 / 7 and polar field/group electronegativity substituent constants (σF and σχ, respectively). The analysis reveals that the ΔE values of both systems are best described by a combination of both substituent constants. This highlights the distinction between through‐space and through‐bond electronic influences characterized by σF and σχ, respectively. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Carboxylic acids based on exo‐substituted tria‐, penta‐, heptafulvenes and ethylene (acrylic acids) were examined in order to determine if they are more sensitive to the substituent effect than benzoic acid – the system originally employed by Hammett. In order to accomplish this task, all possible structural isomers of benzoic acid, tria‐, penta‐ and heptafulvene‐based carboxylic acids, acrylic and methacrylic acids substituted by 13 substiuents (BH2, CHO, CN, COCN, NO2, CF3, Me, Cl, F, OH, OMe, NH2 and NMe2) were optimized at the B3LYP/6‐311++G(d,p) level of theory, and Gibbs free energies of carboxylic group dissociation (ΔGdis) were calculated. These energies were subsequently intercorrelated, and from the slopes of linear regressions, it was estimated which system is associated with greatest changes of ΔGdis due to substitution and thus is most sensitive to the substituent effect. It was found that all fulvene‐based carboxylic acids have greater range of ΔGdis change than benzoic acid, but the largest range of change was observed in the case of acrylic and methacrylic acids. The acrylic acid as the most sensitive system to substitution could replace benzoic acid for an improved version of substituent constant used to measure pi‐electron substituent effect. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Various electron donor and acceptor substituted (NO2, CN, Cl, H, OCH3, NH2) p-phenyl ethenyl-E- thiophenes (1–6) were synthesized and substituent dependent optical properties (dipole moment, transition dipole moment, oscillator strength, optical band gap, hyperpolarizability) were studied using Solvatochromism and Density functional theory. It is shown that thiophene acts as a weak electron donor in presence of an electron withdrawing p-phenyl substituent (NO2, CN, Cl), whereas thiophene acts as a weak electron acceptor in presence of an electron donating p-phenyl substituent (OCH3, NH2). In comparison to ethenyl thiophene 4, the HOMO-LUMO energy band gap is decreased upon increasing the electron donating or electron withdrawing capacity of p-phenyl substituent. From the excited state dipole moment calculation, it is shown that the excited state is highly dipolar for nitro and amino compounds 1 and 6, whereas compounds 2–5 show a non-polar excited state. As compared to the ethenyl thiophene 4, the first hyperpolarizability (β) increases upon substitution either with a strong electron withdrawing or strong electron donating p-phenyl substituent. A large β value is found for p-nitro phenyl ethenyl-E-thiophene and p-amino phenyl ethenyl-E- thiophene. Overall, these studies provide useful information in understanding the optical properties of phenyl and heterocyclic based ethenyl systems.  相似文献   

18.
Herein, we report the synthesis, electrochemical, and computational evaluation of six 2‐substituted imidazolium bromides and six 2‐substituted imidazolium triflates. All final compounds were obtained in 2 or fewer synthetic steps from inexpensive starting materials and display a single, irreversible electrochemical reduction. The reduction potentials span a range greater than 1 V depending on the electron withdrawing power of the 2‐substituent. Imidazolium bromides such as Bn2(H)ImBr reduce with E1/2 = ?2.70 V vs Fc/Fc+, whereas the electron‐withdrawing Br‐containing analog Bn2(Br)ImBr reduces at only ?1.58 V vs Fc/Fc+. The reduction potential of imidazolium bromides obeys a linear free energy relationship to σm Hammett constants, whereas imidazolium triflates correlate better with the σp Hammett constants. These results indicate that the stabilizing effect of the 2‐substituent is anion‐sensitive, changing from induction to resonance upon exchanging bromide for triflate. Predicted electron affinities from density functional theory–optimized structures of imidazolium cations and reduced species more closely match experimental data for the triflates, suggesting that a triflate anion does not electronically perturb the imidazolium core as much as a bromide. Taken together, these data highlight the dual modularity of imidazolium salts by changing both 2‐substituent and anion.  相似文献   

19.
The nature and strength of metal–ligand bonds in organotransition‐metal complexes are crucial to the understanding of organometallic reactions and catalysis. Quantum chemical calculations at different levels of theory have been used to investigate heterolytic Fe–N bond energies of para‐substituted anilinyldicarbonyl(η5‐cyclopentadienyl)iron [p‐G‐C6H4NH(η5‐C5H5)Fe(CO)2, abbreviated as p‐G‐C6H4NHFp (1), where G = NO2, CN, COMe, CO2Me, CF3, Br, Cl, F, H, Me, MeO, and NMe2] and para‐substituted α‐acetylanilinyldicarbonyl(η5‐cyclopentadienyl)iron [p‐G‐C6H4N(COMe)(η5‐C5H5)Fe(CO)2, abbreviated as p‐G‐C6H4N(COMe)Fp (2)] complexes. The results show that BP86 and TPSSTPSS can provide the best price/performance ratio and more accurate predictions in the study of ΔHhet(Fe–N)'s. The linear correlations [r = 0.98 (g, 1a), 0.93 (g, 2b)] between the substituent effects of heterolytic Fe–N bond energies [ΔΔHhet(Fe–N)'s] of series 1 and 2 and the differences of acidic dissociation constants (ΔpKa) of N–H bonds of p‐G‐C6H4NH2 and p‐G‐C6H4NH(COMe) imply that the governing structural factors for these bond scissions are similar. And the linear correlations [r = ?0.99 (g, 1c), ?0.92 (g, 2d)] between ΔΔHhet(Fe–N)'s and the substituent σp? constants show that these correlations are in accordance with Hammett linear free energy relationships. The polar effects of these substituents and the basis set effects influence the accuracy of ΔHhet(Fe–N)'s. ΔΔHhet(Fe–N)'s(1, 2) follow the captodative principle. MEα‐COMe, para‐Gs include the influences of the whole molecules. The correlation of MEα‐COMe, para‐Gs with σp? is excellent. MEα‐COMe, para‐Gs rather than ΔΔHhet(Fe–N)'s in series 2 are more suitable indexes for the overall substituent effects on ΔHhet(Fe–N)'s(2). Insight from this work may help the design of more effective catalytic processes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
A series of substituted chlorinated chalcones namely, 3‐(2,4‐dichlorophenyl)‐1‐(4′‐X‐phenyl)‐2‐propen‐1‐one, have been synthesized, X being H, NH2, OMe, Me, F, Cl, CO2Et, CN, and NO2. Dual substituent parameter (DSP) models of 13C NMR chemical shift (CS) have revealed that π‐polarization concept could be utilized to explain the reverse field effect at CO, the enhanced substituent field effect at CO, C‐2, and C‐5, and the decreased sensitivity of substituent field effect at C‐6. Chlorine atoms dipole direction at the benzylidene ring either enhances or reduces substituent effect depending on how they couple with the substituent dipole at the probe site. The correlation of 13C NMR CS of C‐2, C‐5, and C‐6 with σ and σ indicates that chlorine atoms in the benzylidine ring deplete the ring from charges. Both MSP of Hammett and DSP of Taft 13C NMR CS models give similar trends of substituent effects at C‐2, C‐5, and C‐6. However, the former fail to give a significant correlation for CO and C‐6 13C NMR CS. MSP of σq and DSP of Taft and Reynolds models significantly correlated 13C NMR CS of Cβ. MSP of σq fails to correlate C‐1′ 13C NMR CS. Investigation of 13C NMR CS of non‐chlorinated chalcones series: 3‐phenyl‐1‐(4′‐X‐phenyl)‐2‐propen‐1‐one has revealed similar trends of substituent effects as in the chlorinated chalcones series for C‐1′, CO, Cα, and Cβ. In contrast, the substituent effect of the non‐chlorinated chalcone series at C‐2, C‐5, and C‐6 did not correlate with any substituent constant. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号