首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report here, the synthesis of two types of heterogeneous nanoparticle catalysts viz., polymer‐supported poly(propyleneimine)‐G2 dendrimer stabilized gold nanoparticle catalysts using crosslinked poly(4‐vinylpyridine) matrix (PSP4VP) as support material. The grafting of dendrimer on the surface of P4VP beads was characterized by FTIR spectrophotometer and CHN analyses. The immobilization of AuNPs was characterized by UV‐Vis spectrum, SEM, and HRTEM studies. The resultant polymer‐supported dendrimer stabilized AuNPs were used as a heterogeneous catalyst for the reduction of 4‐nitrophenol. The catalytic activity is found to be excellent and it can also be reused many times by simple filtration and activity remains maintained. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2525–2532, 2010  相似文献   

2.
Control of functionalities in polymer nanoparticles (PNPs) is important for their application. Thus, there is an interest for well‐defined nanoparticle platforms to which desired functions could readily, and in modular fashion, be imparted. Herein, we report an amine‐reactive PNP platform for the modular synthesis of functional PNPs from poly(pentafluorophenylmethacrylate) (poly(PFPMA)) through a simple substitution/nanoprecipitation/photo‐crosslinking strategy. Substitution of amine containing coumarin into poly(PFPMA) allows for the achievement of structural stability of nanoprecipitated particles through photo‐crosslinking after nanoprecipitation, making it possible to carry out subsequent chemical transformations in organic solvents if needed. We demonstrate that various small molecules and an amine‐terminated polymer could be used to modify the crosslinked PNPs to endow them with various functions including fluorescence and responsiveness to temperature changes. The functional PNPs were characterized with variable temperature dynamic light scattering (DLS), UV–vis, and photoluminescence (PL) spectroscopy, and transmission electron microscopy (TEM). © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1895–1901  相似文献   

3.
A new “grafting from” strategy for grafting of different monomers (methacrylates, acrylates, and acrylamide) on poly(vinylidene fluoride) (PVDF) backbone is designed using atom transfer radical coupling (ATRC) and atom transfer radical polymerization (ATRP). 4‐Hydroxy TEMPO moieties are anchored on PVDF backbone by ATRC followed by attachment of ATRP initiating sites chosen according to the reactivity of different monomers. High graft conversion is achieved and grafting of poly(methyl methacrylate) (PMMA) exhibits high degree of polymerization (DPn = 770) with a very low graft density (0.18 per hundred VDF units) which has been increased to 0.44 by regenerating the active catalyst with the addition of Cu(0). A significant impact on thermal and stress–strain property of graft copolymers on the graft density and graft length is noted. Higher tensile strain and toughness are observed for PVDF‐g‐PMMA produced from model initiator but graft copolymer from pure PVDF exhibits higher tensile strength and Young's modulus. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 995–1008  相似文献   

4.
Multivalent protein‐carbohydrate interactions are involved in the initial stages of many fundamental biological and pathological processes through lectin–carbohydrate binding. The design of high affinity ligands is therefore necessary to study, inhibit and control the processes governed through carbohydrate recognition by their lectin receptors. Carbohydrate‐functionalised gold nanoclusters (glyconanoparticles, GNPs) show promising potential as multivalent tools for studies in fundamental glycobiology research as well as biomedical applications. Here we present the synthesis and characterisation of galactose functionalised GNPs and their effectiveness as binding partners for PA‐IL lectin from Pseudomonas aeruginosa. Interactions were evaluated by hemagglutination inhibition (HIA), surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) assays. Results show that the gold nanoparticle platform displays a significant cluster glycoside effect for presenting carbohydrate ligands with almost a 3000‐fold increase in binding compared with a monovalent reference probe in free solution. The most effective GNP exhibited a dissociation constant (Kd) of 50 nM per monosaccharide, the most effective ligand of PA‐IL measured to date; another demonstration of the potential of glyco‐nanotechnology towards multivalent tools and potent anti‐adhesives for the prevention of pathogen invasion. The influence of ligand presentation density on their recognition by protein receptors is also demonstrated.  相似文献   

5.
Interpolymer polyelectrolyte complexes of chitosan (CS) with poly(acrylic acid) homopolymers and polystyrene‐block‐poly(acrylic acid) diblock copolymers were prepared and characterized. The influence of the positive/negative charge balance (charge ratio), pH, and ionic strength were thoroughly studied by dynamic light scattering. The existence of a strong polyelectrolyte effect was also highlighted in this study. Domains of stability, in which nanoparticle sizes are smaller than 100 and 200 nm for complexes of CS with the homopolymer and copolymer, respectively, were identified and confirmed by scanning electron microscopy and atomic force microscopy. The charged nature of the surface of the nanoparticles was evidenced by Zeta potential measurements. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

6.
Blends of isotactic (natural) poly(3‐hydroxybutyrate) (PHB) and poly(methyl methacrylate) (PMMA) are partially miscible, and PHB in excess of 20 wt % segregates as a partially crystalline pure phase. Copolymers containing atactic PHB chains grafted onto a PMMA backbone are used to compatibilize phase‐separated PHB/PMMA blends. Two poly(methyl methacrylate‐g‐hydroxybutyrate) [P(MMA‐g‐HB)] copolymers with different grafting densities and the same length of the grafted chain have been investigated. The copolymer with higher grafting density, containing 67 mol % hydroxybutyrate units, has a beneficial effect on the mechanical properties of PHB/PMMA blends with 30–50% PHB content, which show a remarkable increase in ductility. The main effect of copolymer addition is the inhibition of PHB crystallization. No compatibilizing effect on PHB/PMMA blends with PHB contents higher than 50% is observed with various amounts of P(MMA‐g‐HB) copolymer. In these blends, the graft copolymer is not able to prevent PHB crystallization, and the ternary PHB/PMMA/P(MMA‐g‐HB) blends remain crystalline and brittle. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1390–1399, 2002  相似文献   

7.
The thermal stabilities of various poly(alkyl methacrylate) homopolymers and poly(methyl methacrylate-g-dimethyl siloxane) (PMMA-g-PSX) graft copolymers have been determined by thermogravimetric analysis (TGA). As expected, the thermal stabilities of poly(alkyl methacrylates) were a function of the ester alkyl group, and polymerization mechanism. In particular, thermally labile linkages, which result from termination during free radical or nonliving polymerization mechanisms, decrease the ultimate thermal stabilities of the polymers. However, graft copolymers, which were prepared by the macromonomer technique with free radical initiators, exhibited enhanced thermal stability compared to homopolymer controls. A more complex free radical polymerization mechanism for the macromonomer modified polymerization may account for this result. © 1994 John Wiley & Sons, Inc.  相似文献   

8.
Conjugated graft copolymers consisting of a poly(3‐hexylthiophene) (P3HT) backbone and poly(9,9'‐dioctylfluorene) side chains (PF) with different grafting degrees were synthesized by the CuAAC reaction. The properties of these materials were studied by UV‐Vis and fluorescence spectroscopy. The former technique provides insight in their self‐assembly, while the latter is used to study the energy funneling from the PF side chains to the P3HT backbone. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1252–1258  相似文献   

9.
In this study, urease was immobilized in a polymer network obtained by complexation of poly(1-vinyl imidazole) (PVI) with poly(acrylic acid) (PAA). Preparation of the polymer network was monitored by FT-IR spectroscopy. Scanning electron microscopy (SEM) revealed that enzyme immobilization had a strong effect on film morphology. Proton conductivity of the PVI/PAA network was measured via impedance spectroscopy under humidified conditions. Values of the Michaelis-Menten constant (K M) for immobilized urease were higher than for the free enzyme, indicating a decreased affinity of the enzyme to its substrate. The basic characteristics (pHopt, pHstability, T opt, T stability, reusability, and storage stability) of immobilized urease were determined. The results show that the PAA/PVI polymer network is suitable for enzyme immobilization.  相似文献   

10.
Self‐association in aqueous solution of amphiphilic poly(acrylic acid)‐b‐poly(propylene oxide)‐b‐poly(acrylic acid) (PAA‐b‐PPO‐b‐PAA) copolymers having various outer PAA block lengths are presented. These copolymers show two thermosensitive behaviors. The first one, due to hydrogen bonds between PAA and PPO resulting in large aggregates, was observed by visible spectroscopy. The second one, due to the association of PPO middle block into aggregates, was evidenced by dynamic light scattering and pyrene fluorescence. These critical temperatures both depend on the ionization and the length of PAA blocks. The characterization of the aggregates above the critical aggregation concentration by fluorescence quenching experiments showed a very low aggregation number corresponding to dimers or trimers association depending on the conditions. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1507–1514  相似文献   

11.
We report the coating of maghemite (γ‐Fe2O3) nanoparticles with poly(ε‐caprolactone) (PCL) through a covalent grafting to technique. ω‐Hydroxy‐PCL was first synthesized by the ring‐opening polymerization of ε‐caprolactone with aluminum isopropoxide and benzyl alcohol as a catalytic system. The hydroxy end groups of PCL were then derivatized with 3‐isocyanatopropyltriethoxysilane in the presence of tetraoctyltin. The triethoxysilane‐functionalized PCL macromolecules were finally allowed to react on the surface of maghemite nanoparticles. The composite nanoparticles were characterized by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Effects of the polymer molar mass and concentration on the amount of polymer grafted to the surface were investigated. Typical grafting densities up to 3 μmol of polymer chains per m2 of maghemite surface were obtained with this grafting to technique. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6011–6020, 2004  相似文献   

12.
The influence of radical initiators upon the emulsion graft copolymerization of styrene and acrylonitrile onto poly(dimethylsiloxane) (PDMS) was studied. As initiators, a series of peroxides and hydroperoxides were coupled with ferrous sulfate, among which the tert-butyl peroxylaurate system gave the highest grafting efficiency (30%). The tert-butyl peroxylaurate initiator fulfills the criteria for efficient radical grafting by generating only the tert-butoxy radical, which is reluctant to form a carbon radical via β-scission, being highly hydrophobic, and not carrying a tertiary hydrogen that may be abstracted by a radical. 13C-NMR analysis of the products showed that the grafting occurred on the silylmethyl groups of PDMS to give 10–25 grafts per polymer and graft ratio in the range 44–140%. The PDMS graft copolymers thus obtained could be used as surface-modifying agents to improve the lubricity and water-repellency of ABS [poly(styrene-co-acrylonitrile)-graft-polybutadiene]. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 2607–2617, 1997  相似文献   

13.
The stability of poly(3‐hexylthiophene) (P3HT) helical structure has been investigated in vacuo and in amorphous polymer surrounding via molecular dynamics‐based simulations at temperatures below and above the P3HT melting point. The results show that the helical chain remains stable at room temperature both in vacuo and in amorphous surrounding, and promptly loses its structure at elevated temperatures. However, the amorphous surrounding inhibits the destruction of the helix at higher temperatures. In addition, it is shown that the electrostatic interactions do not significantly affect the stability of the helical structure. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 2448–2456  相似文献   

14.
A well‐defined double hydrophilic graft copolymer, with polyacrylate as backbone, hydrophilic poly(ethylene glycol) and poly(methacrylic acid) as side chains, was synthesized via successive atom transfer radical polymerization followed by the selective hydrolysis of poly(methoxymethyl methacrylate) side chains. The grafting‐through strategy was first used to prepare poly[poly(ethylene glycol) methyl ether acrylate] comb copolymer. The obtained comb copolymer was transformed into macroinitiator by reacting with lithium diisopropylamine and 2‐bromopropionyl chloride. Afterwards, grafting‐from route was employed for the synthesis of poly[poly(ethylene glycol) methyl ether acrylate]‐g‐poly(methoxymethyl methacrylate) amphiphilic graft copolymer. The molecular weight distribution of this amphiphilic graft copolymer was narrow. Poly(methoxymethyl methacrylate) side chains were connected to polyacrylate backbone through stable C? C bonds instead of ester connections. The final product, poly[poly(ethylene glycol) methyl ether acrylate]‐g‐poly(methacrylate acid), was obtained by selective hydrolysis of poly(methoxymethyl methacrylate) side chains under mild conditions without affecting the polyacrylate backbone. This double hydrophilic graft copolymer was found be stimuli‐responsive to pH and ionic strength. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4056–4069, 2008  相似文献   

15.
Four novel conjugated polymers containing the eumelanin‐inspired indole core have been successfully synthesized using common cross coupling reactions. These polymers differed by the arylene and the carbon–carbon bond linkage. Optoelectronic experiments of these polymers suggest that the ethynylene linkage contributed to the red‐shifted absorption spectra and blue‐shifted emission spectra when compared to the vinylene linkage polymers. Furthermore, the optical bandgaps of the poly(indoylenearyleneethynylene)s (PIAEs) were smaller compared to the poly(indoylenearylenevinylene)s (PIAVs). Surprisingly, the HOMOs of these polymers were less affected by the nature of the carbon–carbon linkage. However, the LUMOs of the PIAEs were lower in comparison to the PIAVs. These eumelanin‐inspired PIAEs and PIAVs are good fluorophores with fluorescence quantum yields ranging from 0.12 to 0.67 and have good thermal stability for applications such as in organic light‐emitting diodes. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 457–463  相似文献   

16.
The yield and regioselectivity of H‐atom abstraction by cumyloxy radicals from poly(isobutylene‐co‐isoprene) (IIR) are quantified and discussed in the context of cross‐linking/degradation outcomes and vinyltriethoxysilane (VTEOS) graft yields. Studies of IIR materials with different isoprene contents show that H‐atom abstraction from the allylic functionality provided by isoprene mers is responsible for the heightened H‐atom transfer reactivity of IIR relative to poly(isobutylene). Differences in the reactivity of allylic and alkyl macroradical intermediates makes high isoprene IIR materials less prone to peroxide‐initiated chain scission, but less responsive to VTEOS grafting formulations. Improved knowledge of H‐atom transfer reactivity is extended to a new approach for IIR cross‐linking involving acrylate‐functionalized nitroxyl chemistry. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3102–3109  相似文献   

17.
This article reports our discovery that poly(ethylene glycol) (PEG) can quantitatively be functionalized by transesterification using Candida antarctica lipase B (Novozyme 435) as the catalyst. α‐ω telechelic PEG‐methacrylates and PEG‐acetates were successfully prepared using commercially available PEGs with both narrow and broad molecular weight distribution. 1H and 13C NMR together with MALDI‐TOF mass spectroscopy verified the expected structures. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3024–3028, 2008  相似文献   

18.
Novel poly(spiroorthocarbonate)s [poly(SOC)]s having a Cardo or bent structure were synthesized by polycondensation of several bis‐catechols having fluorene (BCFL), spirobisindane (BCSPI), or spirobischromane (BCSPC) in the structure with 2,2,6,6‐tetrachlorobenzo[1,2‐d:4,5‐d’]bis[1,3]dioxole (4ClBD). Synthesis of poly(SOC)s was confirmed by NMR and IR spectrometry. The poly(SOC)s obtained from BCFL or BCSPC were soluble in common organic solvents. The glass transition temperature of the poly(SOC)s was not detected by differential scanning calorimetry (DSC) in the range of 50–300 °C. The 10 wt % decomposition temperature of the poly(SOC)s was found to be above 400 °C. These results indicated the high thermal stability of the poly(SOC)s. Soluble poly(SOC)s could be possessed to form a film on a glass plate by the spin coat method. The obtained polymer films were 0.2 μm in thickness with 95% light transmission in the optical wavelength range. These results suggested that the Cardo or bent structure may block the packing of the main‐chain of the structure, which improves the solubility of the polymers, increases transparency, and enhances the thermal stability of SOCs. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1409‐1416  相似文献   

19.
Commercially available poly(vinyl chloride) (PVC) was covalently modified with terpyridine supramolecular binding units in a two‐step reaction. First, PVC was modified with aromatic thiols to introduce OH functionalities into the polymer backbone, which were subsequently reacted with an isocyanate‐functionalized terpyridine binding unit. The resulting functionalized material contained metal‐ion binding sites, which could be used for grafting and crosslinking reactions. A grafting experiment was performed with a small organic terpyridine ligand. The complexation of the modified PVC with several transition‐metal ions was studied with ultraviolet–visible spectroscopy and gel permeation chromatography. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2964–2973, 2003  相似文献   

20.
For the synthesis of brush‐shaped conjugated polymers consisting of a poly(phenylene butadiynylene) backbone and well‐defined poly(vinyl ether) (polyVE) side chains, we designed polyVE‐based macromonomers bearing a diethynyl benzene group at the terminus and applied them to the grafting through synthesis. The macromonomer (DE‐PIBVE) was synthesized by living cationic polymerization of isobutyl VE (IBVE) using a functionalized initiator (TMS‐DEVE‐TFA) having a TMS protected diethynyl benzene moiety, followed by deprotection of the TMS groups. As a result, we succeeded in the synthesis of the target brush‐shaped conjugated polymers [poly(DE‐PIBVE)] by oxidative coupling reaction of the diethynyl benzene groups. We found that the solution of poly(DE‐PIBVE) with a specific side chain length exhibited solvatochromism and thermochromism depending on the polarity of the media employed. This phenomenon was attributed to self‐assembly in polar media due to the intermolecular ππ interaction between neighboring conjugated polymer backbones, where the self‐assembly behavior would be closely related to the pendant polyVE structure. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3318–3325  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号