首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dynamic chemistry of disulfide bonds has emerged as one of the most powerful tools used for the fabrication of organic compounds and self‐healing materials. In this article, a novel aromatic amine‐terminated polysulfide oligomer is first synthesized from thiol‐terminated polysulfide oligomer and bis(4‐aminophenyl) disulfide via disulfide metathesis mechanism. The resulting oligomer is confirmed by FTIR and 1H NMR spectra and then successfully applied in constructing self‐healable polyurea material (A‐LP23‐I), which combines the advantages of higher strength of polyureas and excellent self‐healing ability of polysulfide‐based materials. After subjecting to a temperature of 75 °C for 48 h, both the tensile strength and ultimate elongation of A‐LP23‐I restore to more than 90% of the original values (3.32 MPa and 396%). This study demonstrates a novel strategy for synthesizing aromatic amine‐terminated oligomer. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1460–1466  相似文献   

2.
The azomethine‐based oligomers bearing boronate groups and imine moieties in the main chain were synthesized from a dialdehyde monomer and an aromatic (oligomer 4 ) diamine or an aliphatic diamine (oligomer 5 ). Based on the oligomers, the nanoparticles with hydrogen peroxide (H2O2) and pH dual‐responsive properties were constructed and encapsulated nile red inside. The nanoparticles disassembled either by the trigger of H2O2 or by the attack of H+, thus leading to the release of loaded species. Compared to oligomer 4 , oligomer 5 showed a faster degradation rate in the presence of H2O2, especially in a weak acidic environment. No significant cytotoxicity was observed as HeLa cells incubated in the nanoparticles with the concentration up to 200 μg/mL evidenced by cytotoxicity assay in vitro. Such a system capable of dual response of H2O2 and H+ may have potential application as a carrier for drug delivery. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1962–1969  相似文献   

3.
A multiblock copolymer consisting of hard (poly(arylene ether sulfone)) and soft (poly(alkyl disulfide)) segments was successfully synthesized by oxidative coupling of the corresponding thiol‐terminated oligomers. Its structure was confirmed by 1H and 13C NMR spectroscopy. The GPC data (Mw = 82,000, Mw/Mn = 2.7) and inherent viscosity (0.67 dL g−1) indicated the formation of a high‐molecular‐weight multiblock copolymer, while AFM and DSC indicated a microphase‐separated morphology. Tensile testing of the multiblock copolymer films showed a large elongation at break, which is characteristic of microphase‐separated hard/soft multiblock copolymers. Over 90% of the elongation at break of damaged samples (notched or cut) was recovered by UV irradiation. The elongation recovery was proportional to the UV irradiation energy, and the high recovery was achieved by relatively weak irradiation (<170 J cm−2). The high content of disulfide bonds in the multiblock copolymer resulted in a lower self‐healing energy. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1358–1365  相似文献   

4.
A novel and efficient strategy for the synthesis of nonisocyanate polyurethanes has been developed via thiol–ene self‐photopolymerization. An aliphatic thiol–ene carbamate monomer (allyl(2‐mercaptoethyl)carbamate, AMC) was synthesized by a one‐step synthesis procedure, from cysteamine and allyl chloroformate. The urethane group was therefore incorporated directly into the monomer precursor, avoiding the problems associated to toxic isocyanates. AMC was successfully stabilized with the radical inhibitor pyrogallol (1% wt). In addition, the use of phenyl phosphonic acid as coadditive allowed its stabilization for lower concentrations of pyrogallol (0.1% wt). AMC was directly transformed into thermoplastic polyurethane (TPU) through thiol–ene photopolymerization by UV‐irradiation at 365 nm. The obtained TPU presented semi‐crystalline nature and very high thermal stability (T5% ~325 °C). It was found that high concentrations of pyrogallol decreased the reaction rate and final conversion of photopolymerization. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3017–3025  相似文献   

5.
Polysiloxanes are commonly used in a myriad of applications, and the “click” nature of the thiol‐ene reaction is well suited for introducing alternative functionalities or for crosslinking these ubiquitous polymers. As such, understanding of the thiol‐ene reaction in the presence of silicones is valuable and would lead to enhanced methodologies for modification and crosslinking. Here, the thiol‐ene reaction kinetics were investigated in functionalized oligosiloxanes having varying degrees of thiol functionalization (SH), π–π interactions (from diphenyls, DP), and ene types (C?C). In the ene‐functionalized oligomers, π–π interactions were controlled through the use of dioctyl repeats (DO). The polymerization rate and rate‐limiting steps were determined for all systems containing an allyl‐functionalized oligomer, and rates ranging from 0.10 to 0.54 mol L?1 min?1 were seen. The rate‐limiting step varied with the oligomer composition; examples of rate‐limited propagation (5:3:2 C?C:DP:DO/1:1 SH:DP) or chain transfer (5:3:2 C?C:DP:DO/3:1 SH:DP) were found in addition to cases with similar reaction rate constants (5:2:3 C?C:DP:DO/1:1 SH:DP). None of the siloxanes were found to exhibit autoacceleration despite their relatively high viscosities. Instead, the allyl‐, vinyl‐, and acrylate‐functionalized siloxanes were all found to undergo unimolecular termination based on their high α scaling values (0.98, 0.95, and 0.82, respectively) in the relation RpRiα. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

6.
Thiol‐isocyanate‐acrylate ternary networks were formed by the combination of thiol‐isocyanate coupling, thiol‐acrylate Michael addition, and acrylate homopolymerization. This hybrid polymerization reaction sequence was preferentially controlled by using phosphine catalyst systems in combination with photolysis. The reaction kinetics of the phosphine/acrylate thiol‐isocyanate coupling reactions were systematically investigated by evaluating model, small molecule reactions. The thiol‐isocyanate reaction was completed within 1 min while the thiol‐acrylate Michael addition reaction required ~10 min. Both thiol‐isocyanate coupling and thiol‐acrylate Michael addition reactions involving two‐step anionic processes were found to be both quantitative and efficient. However, the thiol‐isocyanate coupling reaction was much more rapid than the thiol‐acrylate Michael addition, promoting initial selectivity of the thiol‐isocyanate reaction in a medium containing thiol, isocyanate, and acrylate functional groups. Films were prepared from thiol‐isocyanate‐acrylate ternary mixtures using 2‐acryloyloxyethylisocyanate and di‐, tri‐, and tetra‐functional thiols. The sequential thiol‐isocyanate, thiol‐acrylate, and acrylate homopolymerization reactions were monitored by infrared spectroscopy during film formation, whereas thermal and mechanical properties of the films were evaluated as a function of the chemical composition following polymerization. The results indicate that the network structures and material properties are tunable over a wide range of properties (Tg ~ 14–100 °C, FWHM ~ 8–46 °C), while maintaining nearly quantitative reactions, simply by controlling the component compositions. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3255–3264, 2010  相似文献   

7.
We have successfully synthesized a series of redox‐degradable hyperbranched polyglycerols using a disulfide containing monomer, 2‐((2‐(oxiran‐2‐ylmethoxy)ethyl)disulfanyl) ethan‐1‐ol (SSG), to yield PSSG homopolymers and hyperbranched block copolymers, P(G‐b‐SSG) and P(SSG‐b‐G), containing nondegradable glycerol (G) monomers. Using these polymers, we have explored the structures of the hyperbranched block copolymers and their related degradation products. Furthermore, side reaction such as reduction of disulfide bond during the polymerization was investigated by employing the free thiol titration experiments. We elucidated the structures of the degradation products with respect to the architecture of the hyperbranched block copolymer under redox conditions using 1H NMR and GPC measurements. For example, the degradation products of P(G‐b‐SSG) and P(SSG‐b‐G) are clearly different, demonstrating the clear distinction between linear and hyperbranched block copolymers. We anticipate that this study will extend the structural diversity of PG based polymers and aid the understanding of the structures of degradable hyperbranched PG systems. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1752–1761  相似文献   

8.
Thiourethane‐based thiol‐ene (TUTE) films were prepared from diisocyanates, tetrafunctional thiols and trienes. The incorporation of thiourethane linkages into the thiol‐ene networks results in TUTE films with high glass transition temperatures. Increases of Tg were achieved by aging at room temperature and annealing the UV cured films at 85 °C. The aged/annealed film with thiol prepared from isophorone diisocyanate and cured with a 10,080‐mJ/cm2 radiant exposure had the highest DMA‐based glass transition temperature (108 °C) and a tan δ peak with a full width at half maximum (FWHM) of 22 °C, indicating a very uniform matrix structure. All of the initially prepared TUTE films exhibited good physical and mechanical properties based on pencil hardness, pendulum hardness, impact, and bending tests. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5103–5111, 2007  相似文献   

9.
In this contribution, we present new reduction‐cleavable hyperbranched disulfide bonds‐containing poly(ester triazole)s with limited intramolecular cyclization, which can be synthesized by the Cu(I)‐catalyzed azide–alkyne cycloaddition (CuAAC) of A2 monomer of dipropargyl 3,3′‐dithiobispropionate and B3 monomer of tris(hydroxymethyl)ethane tri(4‐azidobutanoate). The hyperbranched poly(ester triazole)s possess numerous terminal groups and weight‐average molecular weight up to 20,400 g mol?1 with a polydispersity index in the range 1.57–2.17. The CuAAC introduces rigid triazole units into the backbones of hyperbranched poly(ester triazole)s and reduces intramolecular cyclization, which is proved by topological analysis and 1H NMR spectroscopy. The disulfide bonds on backbones endow the reduction‐cleavable feature to the hyperbranched poly(ester triazole)s at the presence of dithiothreitol. It gives a novel and convenient methodology for the synthesis of reduction‐responsive functional polymer with controlled topologies, and the reduction‐cleavable hyperbranched poly(ester triazole)s with limited intramolecular cyclization are expected to possess potential in the application of stimuli‐responsive anticancer drug nanocarriers. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2374–2380  相似文献   

10.
A new strategy is developed to prepare both α,ω‐dithiol and α,ω‐divinyl linear telechelic polythiolether oligomers by visible light induced thiol‐ene chemistry in the presence of a fac‐Ir(ppy)3 photoredox catalyst. Polythiolether oligomers of well‐defined end groups and controlled molecular weights have been successfully synthesized at varying monomer molar ratios of 1,4‐benzenedimethanethiol (BDMT) to diethylene glycol divinyl ether (DEGVE). 1H NMR and MALDI‐TOF MS analyses demonstrate that as‐prepared polythiolethers possess high end‐group fidelity, which is further supported by the successful polyaddition of polythiolethers bearing α,ω‐dithiol and α,ω‐divinyl groups. For example, with the α,ω‐dithiol‐ (Mn = 1900 g mol?1, PDI = 1.25) and α,ω‐divinyl‐terminated (Mn = 2000 g mol?1, PDI = 1.29) polythiolethers as macromonomers, the molecular weight of resulting polythiolether is up to 7700 g mol?1 with PDI as 1.67. The reactivity of the terminal thiol group is further confirmed by the addition reaction with N‐(1‐pyrenyl)maleimide. UV‐vis spectra and fluorescene measurements suggest that fac‐Ir(ppy)3 undergo a redox quenching process reacted with BDMT to generate thiyl free radicals. With these results, the mechanism of the thiol‐ene reaction catalyzed by photoredox catalyst is proposed. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 740–749  相似文献   

11.
The ability to prepare high Tg low shrinkage thiol–ene materials is attractive for applications such as coatings and dental restoratives. However, thiol and nonacrylated vinyl materials typically consist of a flexible backbone, limiting the utility of these polymers. Hence, it is of importance to synthesize and investigate thiol and vinyl materials of varying backbone chemistry and stiffness. Here, we investigate the effect of backbone chemistry and functionality of norbornene resins on polymerization kinetics and glass transition temperature (Tg) for several thiol–norbornene materials. Results indicate that Tgs as high as 94 °C are achievable in thiol–norbornene resins of appropriately controlled chemistry. Furthermore, both the backbone chemistry and the norbornene moiety are important factors in the development of high Tg materials. In particular, as much as a 70 °C increase in Tg was observed in a norbornene–thiol specimen when compared with a sample prepared using allyl ether monomer of analogous backbone chemistry. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5686–5696, 2007  相似文献   

12.
A series of aluminum dimethyl complexes 1 – 6 bearing N‐[2‐(pyrrolidinyl)benzyl]anilido ligands were synthesized and well characterized. The molecular structure of complex 1 determined by an X‐ray diffraction study indicates the bidentate chelating mode of the pyrrolidinyl‐anilido ligand. In the absence of a coinitiator, these complexes exhibited excellent control toward the polymerizations of ε‐caprolactone and rac‐lactide, affording polyesters with quite narrow molecular weight distributions (Mw/Mn = 1.04–1.26). The end group analysis of ε?CL oligomer via 1H NMR and ESI‐TOF MS methods gave strong support to the hypothesis that the polymerization catalyzed by these aluminum complexes proceeds via a coordination‐insertion mechanism involving a unique Al? N (amido) bond initiation. Via 1H NMR scale oligomerization studies, it is suggested that the insertion of the first lactide monomer into Al? N bond of the complex is much easier than the insertion of lactide monomer into the newly formed Al? O (lactate) bond and might also be easier than the insertion of the first ε?CL monomer into Al? N bond. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3096–3106  相似文献   

13.
In this study, a novel polymer electrolyte membrane, poly(vinylbenzyl sulfonic acid)‐grafted poly(tetrafluoroethylene‐co‐hexafluoropropylene) (FEP‐g‐PVBSA), has been successfully prepared by simultaneous irradiation grafting of vinylbenzyl chloride (VBC) monomer onto a FEP film and taking subsequent chemical modification steps to modify the benzyl chloride moiety to the benzyl sulfonic acid moiety. The chemical reactions for the sulfonation were carried out via the formation of thiouronium salt with thiourea, base‐catalyzed hydrolysis for the formation of thiol, and oxidation with hydrogen peroxide. Each chemical conversion process was confirmed by FTIR, elemental analysis, and SEM‐EDX. A chemical stability study performed with Fenton's reagent (3% H2O2 solution containing 4 ppm of Fe2+) at 70 °C revealed that FEP‐g‐PVBSA has a higher chemical stability than the poly(styrene sulfonic acid)‐grafted membranes (FEP‐g‐PSSA). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 563–569, 2010  相似文献   

14.
A convenient one‐pot synthesis of linear–hyperbranched polyphosphoesters (l–HBPPEs) was accomplished by a tandem ring‐opening metathesis polymerization (ROMP) and acyclic diene metathesis (ADMET) polymerization procedure. A linear monotelechelic poly(norbornene) with a terminal acrylate and many pendent thiol groups is first prepared through adding an internal cis‐olefin terminating agent to the reaction mixture immediately after the completion of the living ROMP, and then utilized as a macromolecular chain stopper in subsequent ADMET polymerization of a phosphoester functional AB2 monomer, yielding l–HBPPEs as the reaction time prolonged. These l–HBPPEs bearing lots of pendent thiol groups in linear poly(norbornene) and peripheral acrylate groups in HBPPE could be self‐crosslinked in ultradilute solution through thiol‐Michael addition click reaction between acrylate and thiol to give single‐molecule nanoparticles with comparatively uniform size. This facile approach can be extended toward the fabrication of novel nanomaterials with sophisticated structures and tunable multifunctionalities. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 964–972  相似文献   

15.
This paper deals with a triallyl monomer bearing a rigid adamantane‐like core derived from myo‐inositol, a naturally occurring cyclic hexaol. The core structure of the monomer can be readily constructed by orthoesterification of myo‐inositol. The polyaddition of the triallyl monomer with dithiols based on the thermally induced radical thiol‐ene reaction gives the corresponding networked polymers. These networked polymers exhibit much higher thermal stability than the comparative networked polymers obtained from a triallyl monomer bearing less rigid cyclohexyl core. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1193–1199  相似文献   

16.
A synthetic route is developed for the preparation of an AB‐type of monomer carrying an epoxy and a thiol group. Base‐catalyzed thiol‐epoxy polymerization of this monomer gave rise to poly(β‐hydroxythio‐ether)s. A systematic variation in the reaction conditions suggested that tetrabutyl ammonium fluoride, lithium hydroxide, and 1,8‐diazabicycloundecene (DBU) were good polymerization catalysts. Triethylamine, in contrast, required higher temperatures and excess amounts to yield polymers. THF and water could be used as polymerization mediums. However, the best results were obtained in bulk conditions. This required the use of a mechanical stirrer due to the high viscosity of the polymerization mixture. The polymers obtained from the AB monomer route exhibited significantly higher molecular weights (Mw = 47,700, Mn = 23,200 g/mol) than the materials prepared from an AA/BB type of the monomer system (Mw = 10,000, Mn = 5400 g/mol). The prepared reactive polymers could be transformed into a fluorescent or a cationic structure through postpolymerization modification of the reactive hydroxyl sites present along the polymer backbone. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2040–2046  相似文献   

17.
The free‐radical homopolymerization and copolymerization behavior of N‐(2‐methylene‐3‐butenoyl)piperidine was investigated. When the monomer was heated in bulk at 60 °C for 25 h without an initiator, about 30% of the monomer was consumed by the thermal polymerization and the Diels–Alder reaction. No such side reaction was observed when the polymerization was carried out in a benzene solution with 1 mol % 2,2′‐azobisisobutylonitrile (AIBN) as an initiator. The polymerization rate equation was found to be Rp ∝ [AIBN]0.507[M]1.04, and the overall activation energy of polymerization was calculated to be 89.5 kJ/mol. The microstructure of the resulting polymer was exclusively a 1,4‐structure that included both 1,4‐E and 1,4‐Z configurations. The copolymerizations of this monomer with styrene and/or chloroprene as comonomers were carried out in benzene solutions at 60 °C with AIBN as an initiator. In the copolymerization with styrene, the monomer reactivity ratios were r1 = 6.10 and r2 = 0.03, and the Q and e values were calculated to be 10.8 and 0.45, respectively. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1545–1552, 2003  相似文献   

18.
Triblock copolymers of N‐vinylpyrrolidone (NVP) and polydimethylsiloxane (PDMS) were synthesized by reversible addition‐fragmentation chain transfer (RAFT) polymerization using two different types of difunctional telechelic PDMS‐based dixanthate macroinitiators. The incorporation of PDMS into the triblock copolymers was evidenced by 1H NMR spectroscopy and varied between 4 mol % and as high as 20 mol %, dependent on reaction time and monomer conversion. The copolymer homogeneity was characterized in terms of molecular weight distribution determined by GPC to estimate the level of control over the chain length. Monomodal molecular weight distributions were observed, and 1H NMR spectroscopy indicated the copolymers had number average molecular weights (Mn) ranging between 28,000 and 160,000 g/mol. In addition, thin film phase separation and critical micelle concentrations for these copolymers were analyzed via transmission electron microscopy and surface tension measurements, respectively. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3387–3394  相似文献   

19.
We describe a new strategy for preparation of benzoxazine monomers based on in situ preparation of a thiol‐functionalized benzoxazine and successive chemical modification of the thiol moiety. The thiol‐functionalized benzoxazine can be prepared from its precursor bearing two benzoxazine moieties linked by disulfide bond. Reductive cleavage of the disulfide bond of the precursor with using triphenylphosphine as a reducing agent allows successful preparation of the thiol‐functionalized benzoxazine. By performing this reduction process in the presence of epoxides and acrylates, the formation of the thiol moiety and its successive reaction with those electrophiles proceed efficiently to give the corresponding benzoxazines with sulfide moieties. The benzoxazine monomers thus prepared exhibit much higher polymerization ability than those without sulfide moiety. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1448–1457  相似文献   

20.
A phenylquinoxaline (PQ) AB monomer mixture was treated with monofunctional and difunctional end‐capping agents and with and without a coupling agent to afford phenylethynyl‐terminated linear PQ oligomers. The resulting PQ oligomers were soluble in common organic solvents and had intrinsic viscosities (IVs) of 0.21–0.30 dL/g. The glass‐transition temperature (Tg) of the diphenylethynyl‐end‐capped PQ oligomer on both sides increased the most, from 215 °C (before curing) to 251 °C (after curing). The PQ AB2 monomer, which acted as both a coupling agent and a monomer for the hyperbranched polymer, was treated with an AB monomer and end‐capping agents to afford phenylethynyl‐terminated hyperbranched polyphenylquinoxalines (PPQs). They were also soluble in common organic solvents, had IVs of 1.00–1.65 dL/g and Tg's of 251–253 °C, and underwent exothermic cure with maxima around 412–442 °C. The Tg's of the cured hyperbranched PPQs ranged from 258 to 261 °C, depending on the number of phenylethynyl groups on the surface. After further curing, they displayed a Tg of 316 °C in one sample and turned into a fully crosslinked network. The dynamic melt viscosities of a linear oligomer (IV = 0.21 dL/g), a hyperbranched sample (IV = 1.00 dL/g), and a linear reference PPQ (IV = 1.29 dL/g) were compared with respect to the processing temperature. The PQ oligomer and hyperbranched PPQ had low melt viscosities. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6318–6330, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号