首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
We have kinetically elucidated the origins of activity enhancement because of the addition of comonomer in Ziegler‐Natta propylene polymerization, using stopped‐flow and continuously purged polymerization. Stopped‐flow polymerization (with the polymerization time of 0.1–0.2 s) enabled us to neglect contributions of physical phenomena to the activity, such as catalyst fragmentation and reagent diffusion through produced polymer. The propagation rate constant kp and active‐site concentration [C*] were compared between homopolymerization and copolymerization in the absence of physical effects. kp for propylene was increased by 30% because of the addition of a small amount of ethylene, whereas [C*] was constant. On the contrary, both kp (for propylene) and [C*] remained unchanged by the addition of 1‐hexene. Thus, only ethylene could chemically activate propylene polymerization. However, continuously purged polymerization for 30 s resulted in much more significant activation by the addition of comonomer, clearly indicating that the activation phenomenon mainly arises from the physical effects. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

2.
A new silolene-bridged compound, racemic (1,4-butanediyl) silylene-bis (1-η5-in-denyl) dichlorozirconium ( 1 ) was synthesized by reacting ZrCl4 with C4H8Si (IndLi)2 in THF. 1 was reacted with trialkylaluminum and then with triphenylcarbenium tetrakis (penta-fluorophenyl) borate ( 2 ) to produce in situ the zirconocenium ion ( 1 +). This “constraint geometry” catalyst is exceedingly stereoselective for propylene polymerization at low temperature (Tp = ?55°C), producing refluxing n-heptane insoluble isotactic poly(propylene) (i-PP) with a yield of 99.4%, Tm = 164.3°C, δHf = 20.22 cal/g and M?w = 350 000. It has catalytic activities of 107?108 g PP/(mol Zr · [C3H6] · h) in propylene polymerization at the Tp ranging from ?55°C to 70°C, and 108 polymer/(mol Zr · [monomer] · h) in ethylene polymerization. The stereospecificity of 1 + decreases gradually as Tp approaches 20°C. At higher temperatures the catalytic species rapidly loses stereochemical control. Under all experimental conditions 1 + is more stereospecific than the analogous cation derived from rac-dimethylsilylenebis (1-η5-indenyl)dichlorozirconium ( 4 ). The variations of polymerization activities in ethylene and in propylene for Tp from ?55°C to +70°C indicates a Michaelis Mention kinetics. The zirconocenium-propylene π-complex has a larger insertion rate constant but lower thermal stability than the corresponding ethylene π-complex. This catalyst copolymerizes ethylene and propylene with reactivity ratios of comparable magnitude rE ? 4rp. Furthermore, rE.rp ? 0.5 indicating random copolymer formation. Both 1 and 4 activated with methylaluminoxane (MAO) exhibit much slower polymerization rates, and, under certain conditions, a lower stereo-selectivity than the corresponding 1 + or 4 + system. © 1994 John Wiley & Sons, Inc.  相似文献   

3.
The catalytic properties of a set of ansa‐complexes (R‐Ph)2C(Cp)(Ind)MCl2 [R = tBu, M = Ti ( 3 ), Zr ( 4 ) or Hf ( 5 ); R = MeO, M = Zr ( 6 ), Hf ( 7 )] in α‐olefin homopolymerization and ethylene/1‐hexene copolymerization were explored in the presence of MAO (methylaluminoxane). Complex 4 with steric bulk tBu group on phenyl exhibited remarkable catalytic activity for ethylene polymerization. It was 1.6‐fold more active than complex 11 [Ph2C(Cp)(Ind)ZrCl2] at 11 atm ethylene pressure and was 4.8‐fold more active at 1 atm pressure. The introduction of bulk substituent tBu into phenyl groups not only increased the catalytic activity greatly but also enhanced the content of 1‐hexene in ethylene/1‐hexene copolymerization. The highest 1‐hexene incorporation was 25.4%. In addition, 4 was also active for propylene and 1‐hexene homopolymerization, respectively, and low isotactic polypropylene (mmmm = 11.3%) and isotactic polyhexene (mmmm = 31.6%) were obtained. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
The initial active site concentrations, [C*]0, have been determined with CH3OT radiolabeling for the Cp2ZrCl2/MAO and CpZrCl3/MAO catalysts (Cp = η5 : cyclopentadienyl, MAO = methyl aluminoxane). Almost all the Zr are found to be catalytically active in 70°C ethylene polymerizations; [C*]0 = [Zr] and [C*]0 = 0.8[Zr] at Al/Zr ratios of 104 and 103, respectively. Lowering the temperature to 50°C and Al/Zr to 5.5 × 102 reduces [C*]0 to 0.2[Zr]. The rate constant of propagation at 70°C was calculated to be 1.6 × 103(M s)?1 for both catalysts at Al/Zr = 1.1 × 104; the values are decreased fivefold and tenfold, respectively, for the CpZrCl3 and Cp2ZrCl2 systems. The usage of 14CO to determine the propagating Zr–P species was investigated. With regard to the time of reaction of 14CO with the polymerization mixture, the initial phase is attributed to reversible CO complexation and reversible migratory insertion. The second slower phase may be due to the formation of enediolate. During the course of a batch polymerization the 14C radioactivity incorporated is small compared to the number of active sites found by CH3OT determination; it is only ca. 10% of [C*]0 at maximum rate of polymerization. Therefore, 14CO radiolabeling cannot be used to count C*.  相似文献   

5.
In bulk polymerization and copolymerization of trioxane with ethylene oxide, it has been shown that p-chlorophenyldiazonium hexafluorophosphate is a superior catalyst as compared to boron trifluoride dibutyl etherate (BF3 · Bu2O). Polymers and copolymers of significantly higher molecular weight have been obtained. The higher molecular weight has been attributed primarily to less inherent chain transfer during propagation, which in turn can be attributed to the superior gegenion PF6?. The polymerization proceeds via a clear period followed by sudden solidification. Faster polymerization and higher molecular weight polymers have been observed for homopolymerization than for copolymerization. The polymer yield obtained after solidification is determined by both rate of polymerization and rate of crystallization of polymers. These rates, in turn, are dependent on the catalyst concentration. The molecular weight is determined both by polymer yield and extent of inherent chain transfer. In the range of monomer to catalyst mole ration [M]/[C] = (0.5–20) × 104 investigated, it has been found that in the higher range, the polymer yield is independent of the catalyst concentration and the extent of inherent chain transfer is inversely proportional to the half power of catalyst concentration: [M]/[C] = (0.5–8) × 104 for homopolymerization and (0.5–3) × 104 for copolymerization with 4.2 mole % ethylene oxide. In the lower range, the yield decreases with catalyst concentration and the extent of inherent chain transfer is inversely proportional to higher power of catalyst concentration. The dependence of molecular weight of polymers on catalyst concentration has been shown to be a complex one. The molecular weight goes through a maximum as the catalyst concentration is decreased. The maximum molecular weights have been obtained at [M]/[C] ≈ 8 × 104 for homopolymerization and ~3 × 104 for copolymerization with 4.2 mole % ethylene oxide. Prior to reaching maximum the molecular weight is inversely proportional to the half power of catalyst concentration indicating it is primarily controlled by inherent chain transfer. Upon further decrease of catalyst, molecular weight decreases as a result of both a decrease in polymer yield and an increase in inherent chain transfer. In copolymerization of trioxane and ethylene oxide, it has been ascertained that methylene chloride exhibits a favorable solvating effect. Although higher inherent chain transfer takes place in copolymerization than in homopolymerization, the extent of chain transfer is independent of ethylene oxide concentration. The difference in polymer yield and molecular weight a t different ethylene oxide concentrations is attributed primarily to the difference in kp/kt ratio. It also has been demonstrated that end capping of polymer chains can be accomplished by the use of a chain transfer agent—methylal.  相似文献   

6.
The kinetics of ethylene/propylene copolymerization catalyzed by (ethylene bis (indeyl)-ZrCI2/methylaluminoxane) has been investigated. Radiolabeling found about 80% of the Zr to be catalytically active. The estimates for rate constants at 50°C are k11 = 1104 (Ms)?1, k12 = 430 (Ms)?1, k22 = 396 (Ms)?1,k21 = 1020 (Ms)?1, and kAtr,1 + kAtr.2 = 1.9 × 10?3 s?1. Substitution of trimethylaluminum for methylaluminoxane resulted in proportionate decrease in polymerization rate. The molecular weight of the copolymer is slightly increased by loweing the [Al]/[Zr] ratio, or addition of Lewis base modifier but at the expense of lowered catalytic activity and increase in ethylene content in the copolymer. Lowering of the polymerization temperature to 0°C resulted in a doubling of molecular weight but suffered 10-fold reduction in polymerization activity and increase of ethylene in copolymer.  相似文献   

7.
The kinetics of propylene polymerization initiated by ansa‐metallocene diamide compound rac‐Me2Si(CMB)2Zr(NMe2)2 (rac‐1, CMB = 1‐C5H2‐2‐Me‐4‐tBu)/methylaluminoxane (MAO) catalyst were investigated. The formation of cationic active species has been studied by the sequential NMR‐scale reactions of rac‐1 with MAO. The rac‐1 is first transformed to rac‐Me2Si(CMB)2ZrMe2 (rac‐2) through the alkylation mainly by free AlMe3 contained in MAO. The methylzirconium cations are then formed by the reaction of rac‐2 and MAO. Small amount of MAO ([Al]/[Zr] = 40) is enough to completely activate rac‐1 to afford methylzirconium cations that can polymerize propylene. In the lab‐scale polymerizations carried out at 30°C in toluene, the rate of polymerization (Rp) shows maximum at [Al]/[Zr] = 6,250. The Rp increases as the polymerization temperature (Tp) increases in the range of Tp between 10 and 70°C and as the catalyst concentration increases in the range between 21.9 and 109.6 μM. The activation energies evaluated by simple kinetic scheme are 4.7 kcal/mol during the acceleration period of polymerization and 12.2 kcal/mol for an overall reaction. The introduction of additional free AlMe3 before activating rac‐1 with MAO during polymerization deeply influences the polymerization behavior. The iPPs obtained at various conditions are characterized by high melting point (approximately 155°C), high stereoregularity (almost 100% [mmmm] pentad), low molecular weight (MW), and narrow molecular weight distribution (below 2.0). The fractionation results by various solvents show that iPPs produced at Tp below 30°C are compositionally homogeneous, but those obtained at Tp above 40°C are separated into many fractions. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 737–750, 1999  相似文献   

8.
The copolymerization of ethylene (E) and norbornene (NB) was investigated using the commercially available and inexpensive catalyst system, cyclopentadienylzirconium trichloride (CpZrCl3)/isobutyl‐modified methylaluminoxane (MMAO), at a moderate polymerization temperature in toluene. For the CpZrCl3 catalyst system activated by aluminoxane with a 40 mol % methyl group and a 60 mol % isobutyl group (MMAO), the quantities of the charged NB and the polymerization temperature significantly affected the molecular weights, polydispersities, and NB contents of the obtained copolymers and the copolymerization activities in all the experiments. As the charged NB increased and thereby the NB/E molar ratio increased, the NB content in the copolymer increased and reached a maximum value of 71 mol %. The CpZrCl3/MMAO ([Al]/[Zr] = 1000) catalyst system with the [NB] of 2.77 mol L?1 and ethylene of 0.70 MPa at 50 °C showed the highest activity of 1690 kg molZr?1 h?1 and molecular weight of 21,100 g mol?1. The 13C NMR analysis showed that the CpZrCl3/MMAO catalyst system produced the E‐NB random copolymer with a number of NB homosequences such as the NN dyad and NNN triad. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7411–7418, 2008  相似文献   

9.
DFT computations have been performed to investigate the mechanism of H2‐assisted chain transfer strategy to functionalize polypropylene via Zr‐catalyzed copolymerization of propylene and p‐methylstyrene (pMS). The study unveils the following: (i) propylene prefers 1,2‐insertion over 2,1‐insertion both kinetically and thermodynamically, explaining the observed 1,2‐insertion regioselectivity for propylene insertion. (ii) The 2,1‐inserion of pMS is kinetically less favorable but thermodynamically more favorable than 1,2‐insertion. The observation of 2,1‐insertion pMS at the end of polymer chain is due to thermodynamic control and that the barrier difference between the two insertion modes become smaller as the chain length becomes longer. (iii) The pMS insertion results in much higher barriers for subsequent either propylene or pMS insertion, which causes deactivation of the catalytic system. (iv) Small H2 can react with the deactivated [Zr]?pMS?PPn facilely, which displace functionalized pMS?PPn chain and regenerate [Zr]? H active catalyst to continue copolymerization. The effects of counterions are also discussed. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 576–585  相似文献   

10.
A density functional theory (B3LYP) computational study of the ethylene–styrene copolymerization process using meso‐Et(H4Ind)2Zr(CH3)2 as the catalyst is presented. The monomer insertion barriers in meso species are evaluated and compared with previously obtained barriers in rac diastereoisomers. Differences related to ethylene homopolymerization and ethylene–styrene copolymerization activities as well as styrene incorporation into the copolymer are found between the meso and rac diastereoisomers. Nevertheless, a migratory insertion mechanism seems to hold for both diastereoisomeric species. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4752–4761, 2006  相似文献   

11.
This article discusses a chemical route to prepare new ethylene/propylene copolymers (EP) containing a terminal reactive group, such as ?‐CH3 and OH. The chemistry involves metallocene‐mediated ethylene/propylene copolymerization in the presence of a consecutive chain transfer agent—a mixture of hydrogen and styrene derivatives carrying a CH3 (p‐MS) or a silane‐protected OH (St‐OSi). The major challenge is to find suitable reaction conditions that can simultaneously carry out effective ethylene/propylene copolymerization and incorporation of the styrenic molecule (St‐f) at the polymer chain end, in other words, altering the St‐f incorporation mode from copolymerization to chain transfer. A systematic study was conducted to examine several metallocene catalyst systems and reaction conditions. Both [(C5Me4)SiMe2N(t‐Bu)]TiCl2 and rac‐Et(Ind)2ZrCl2, under certain H2 pressures, were found to be suitable catalyst systems to perform the combined task. A broad range of St‐f terminated EP copolymers (EP‐t‐p‐MS and EP‐t‐St‐OH), with various compositions and molecular weights, have been prepared with polymer molecular weight inversely proportional to the molar ratio of [St‐f]/[monomer]. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1858–1872, 2005  相似文献   

12.
The kinetics of ethylene polymerization using homogeneous Cp2ZrCl2/aluminoxane catalysts in toluene has been investigated at 70 °C with an ethylene pressure of 30 psi. Four aluminoxanes were used: methylaluminoxane, modified methylaluminoxanes with a fraction of methyl groups substituted with isobutyl (MMAO‐4) or octyl (MMAO‐12) groups, and polymethylaluminoxane (PMAO‐IP). The cocatalyst‐to‐catalyst ratio, [Al]/[Zr], varied from 1000 to 10,000. The experimental results obtained using the four cocatalysts were compared and a model was proposed to fit the rate of polymerization as a function of polymerization time and [Al]/[Zr] ratio. Molecular weight distributions with polydispersities between three and four indicate the presence of more than one active site type. We proposed a model that explained these broad molecular weight distributions using an unstable active complex that is formed in the early stages of the reaction and is transformed over time to a more stable active complex via an intermediate. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1677–1690, 2007  相似文献   

13.
4-Vinylcyclohexene (VCH) and cyclooctadiene (COD) were investigated as termonomers in EPDM (ethylene/propylene/diene) synthesis by using rac-ethylenebis (1-η5-indenyl) zir-conium dichloride ( 1 ) as a catalyst precursor. Homopolymerizations of VCH, vinylcycloh-exane and cyclohexene were compared. The parameter Kπκp, which is the apparent rate constant for Ziegler-Natta polymerization, is about the same for VCH and vinylcyclohexanebut is 10 times smaller for cyclohexene. Therefore, the linear olefinic double bond is more active than the cyclic internal double bond. VCH reduces ethylene polymerization rate but not propylene polymerization rate in copolymerizations. In terpolymerizations, VCH tends to suppress ethylene incorporation especially at elevated polymerization temperature and Lowers the polymer MW by about two-fold. COD has very low activity as a termonomer. © 1995 John Wiley & Sons, Inc.  相似文献   

14.
The copolymerization of BF_2-omplexed ethyl acrylate with propylene in the presence ofAIBN at 25℃was investigated. It was found that the rate of the copolymerization was propor-tional to the square root of the initiator concentration. The chain transfer agent CCl_4 greatly af-fects the inherent viscosity of the resulting copolymer. The smaller the dielectric constant of thesolvent, the greater the rate of copolymerization is. The equal concentration of the two monomersgive the maximum copolymerization rate. The ~1H-NMR and ~(13)C-NMR analysis indicated, when[EA.BF_2]/[EA.BF_2]+[P]>0.5, the resulting copolymer was the acrylate-rich random copoly-mer. Through the kinetic experiments we suggest that copolymerization follows the mechanismof the random copolymerization of the ternary complex with binary complex. When [EA.BF_3]/[EA.BF_2]+[P]<0.5, the resulting copolymer is always strictly alternating, and the alternatingcopolymerization follows the mechanism of the ternary complex homopolymerization. Usingthe homolog of the propylene, 1-pentene, we found that BF_3-complexed ethyl acrylate can forma ternary complex with 1-pentene identified by UV spectroscopy. This is a strong evidence forthe mechanism of ternary complex homopolymerizetion.  相似文献   

15.
A number of metallocene/methylaluminoxane (MAO) catalysts have been compared for ethylene/propylene copolymerizations to find relationship between the polymerization activities, copolymer structures, and copolymerization reactivity ratio with the catalyst structures. Stereorigid racemic ethylene bis (indenyl) zirconium dichloride and the tetrahydro derivative exhibit very high activity of 10 7 g (mol Zr h bar)?1, giving copolymers having comonomer compositions about the same as the feed compositions, molecular weights increasing with the increase of ethylene in the feed, random incorporation of comonomers, and narrow molecular weight distribution indicative of a single catalytic species. Nonbridged bis (indenyl) zirconium behaved differently, favoring the incorporation of ethylene over propylene, producing copolymers whose molecular weight decreases with the increase of ethylene in the feed, broad molecular weight distribution, and a methanol soluble fraction. This catalyst system contains two or more active species. Simple methallocene catalysts have much lower polymerization activities. CpTiCl2/MAO produced copolymers with tendency toward alternation, whereas Cp2HfCl2/MAO gave copolymer containing short blocks of monomers.  相似文献   

16.
Monocyclopentadienyl titanium imidazolin‐2‐iminato complexes [Cp′Ti(L)X2] 1a (Cp′ = cyclopentadienyl, L = 1,3‐di‐tert‐butylimidazolin‐2‐imide, X = Cl), 1b (X = CH3); 2 (Cp′ = cyclopentadienyl, L = 1,3‐diisopropylimidazolin‐2‐imide, X = Cl); 3 (Cp′ = tert‐butylcyclopentadienyl, L = 1,3‐di‐tert‐butylimidazolin‐2‐imide, X = Cl), upon activation with methylaluminoxane (MAO) were active for the polymerization of ethylene and propylene and the copolymerization of ethylene and 1‐hexene. Catalysts derived from imidazolin‐2‐iminato tropidinyl titanium complex 4 = [(Trop)Ti(L)Cl2] (Trop = tropidinyl, L = 1,3‐di‐tert‐butylimidazolin‐2‐imide) were much less active. Narrow polydispersities were observed for ethylene and propylene polymerization, but the copolymerization of ethylene/hexene led to bimodal molecular weight distributions. The productivity of catalysts derived from the dialkyl complex 1b activated with [Ph3C][B(C6F5)4] or B(C6F5)3 were less active for ethylene/hexene copolymerization but yielded ethylene/hexene copolymers of narrower molecular weight distributions than those derived from 1a/MAO. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6064–6070, 2008  相似文献   

17.
The cationic homopolymerization and copolymerization of L,L ‐lactide and ε‐caprolactone in the presence of alcohol have been studied. The rate of homopolymerization of ε‐caprolactone is slightly higher than that of L,L ‐lactide. In the copolymerization, the reverse order of reactivities has been observed, and L,L ‐lactide is preferentially incorporated into the copolymer. Both the homopolymerization and copolymerization proceed by an activated monomer mechanism, and the molecular weights and dispersities are controlled {number‐average degree of polymerization = ([M]0 ? [M]t)/[I]0, where [M]0 is the initial monomer concentration, [M]t is the monomer concentration at time t, and [I]0 is the initial initiator concentration; weight‐average molecular weight/number‐average molecular weight ~1.1–1.3}. An analysis of 13C NMR spectra of the copolymers indicates that transesterification is slow in comparison with propagation, and the microstructure of the copolymers is governed by the relative reactivity of the comonomers. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 7071–7081, 2006  相似文献   

18.
Flowing microwave plasma of propylene and propylene with argon was studied by mass spectrometry. Plasma composition was investigated as a function of external parameters such as pressure, argon/propylene ratio, and microwave-induced power. It was found that the propylene broke down to C2H2 and CH4, or reacted further with propylene. Two main products, leading to the determination of three main chain reactions for the polymerization of propylene by ion-molecule interactions, were observed, namely, C2H2 and CH4. These were the propylene, acetylene, and ethylene chain reactions. It was also found that the propylene disappeared in a pseudo-first-order reaction. Consequently an overall rate constant for the polymerization was determined (50 sec–1 at 1 torr pressure for propylene plasma). This constant is found to be linearly dependent upon the propylene percent concentration, and nonlinearly dependent upon plasma pressure.Partly presented at the 157th meeting of the Electrochemical Society, St. Louis, Missouri, May 11–16, 1980.  相似文献   

19.
A series of Me4Cp–amido complexes {[η51‐(Me4C5)SiMe2NR]TiCl2; R = t‐Bu, 1 ; C6H5, 2 ; C6F5, 3 ; SO2Ph, 4 ; or SO2Me, 5 } were prepared and investigated for olefin polymerization in the presence of methylaluminoxane (MAO). X‐ray crystallography of complexes 3 and 4 revealed very long Ti N bonds relative to the bonds of 1 . These complexes were employed for ethylene–styrene copolymerizations, styrene homopolymerizations, and propylene homopolymerizations in the presence of MAO. The productivities of the catalysts derived from 3 – 5 were much lower than the productivity of the catalyst derived from 1 for the propylene polymerizations and ethylene–styrene copolymerizations, whereas the styrene polymerization activities were much higher for the catalysts derived from 3 – 5 than for the catalyst derived from 1 . The polymerization behavior of the catalysts derived from the metallocenes 3 – 5 were more reminiscent of monocyclopentadienyl titanocene Cp′TiX3/MAO catalysts than of CpATiX2/MAO catalysts such as 1 containing alkylamido ligands. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4649–4660, 2000  相似文献   

20.
Complexes (R^1Cp)(R^2Ind)ZrCl2, the catalysts previously reported active for ethylene polymerization showed high activity in ethylene/1-hexene copolymerization and propylene polymerization in the presence of MAO. The content of 1-hexene in copolymers ranged from 1.2% to 3.2%. In propylene polymerization the complex 1 showed the highest activity, up to 1.2×10^6 g of polypropylene per mol of catalyst per hour. Based on the analysis of NMR spectral data, the relationships between complex structures and polymerization results were explored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号