首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
The electroluminescence intensity of the phenanthrene‐functionalized gold nanoparticles, PMPT‐Au nanoparticles/CPB: Ir(PIA)2 (acac) film, was increased by 4.9 times compared with control device, CPB: Ir(PIA)2 (acac) due to coupling between the excitons of emissive layer and localized surface plasmonic resonance of PMPT‐Au NPs. The maximum luminous efficiencies of devices II to IV with PMPT‐Au NPs were 39.2 cd A?1 (11.8 V), 40.1 cd A?1 (10.5 V), and 43.1 cd A?1 (9.0 V), respectively. The increment of current efficiency with PMPT‐Au NP coated devices was strongly related to the energy transfer between the radiated light generated from CBP: Ir(PIA)2 (acac) emissive layer and localized surface plasmonic resonance excited by PMPT‐Au NP layer.  相似文献   

2.
In this paper, the green quantum dots capped with the ligand, tris(mercaptomethyl)nonane (TMMN), are fabricated as the light‐emitting layer for efficient and bright light‐emitting diodes. These TMMN‐capped quantum dots exhibit well‐preserved photoluminescence properties with quantum yields of ∼90% after ligand exchange. The light‐emitting diodes based on TMMN‐capped quantum dots are reported with a maximum external quantum efficiency of 16.5% corresponding to a power efficiency and current efficiency of 57.6 lm W–1 and 70.1 cd A–1, respectively. The devices exhibit high color stability that is not markedly affected by the increase of applied voltage, thus leading to a high color reproducibility. Most importantly, the devices exhibit high environmental stability. For the highest luminance devices (with emitting layer thickness of 25 nm) and the highest power efficiency devices (with emitting layer thickness of 38 nm), the lifetimes are > 480 000 h and > 110 000 h, respectively.

  相似文献   


3.
Controlling spontaneous emission (SE) is of fundamental importance to a diverse range of photonic applications including but not limited to quantum optics, low power displays, solar energy harvesting and optical communications. Characterized by photonic bandgap (PBG) property, three‐dimensional (3D) photonic crystals (PCs) have emerged as a promising synthetic material, which can manipulate photons in much the same way as a semiconductor does to electrons. Emission tunable nanocrystal quantum dots (QDs) are ideal point sources to be embedded into 3D PCs towards active devices. The challenge however lies in the combination of QDs with 3D PCs without degradation of their emission properties. Polymer materials stand out for this purpose due to their flexibility of incorporating active materials. Combining the versatile multi‐photon 3D micro‐fabrication techniques, active 3D PCs have been fabricated in polymer‐QD composites with demonstrated control of SE from QDs. With this milestone novel miniaturized photonic devices can thus be envisaged.  相似文献   

4.
为了改善蓝光大功率LED芯片p电极处的电流拥挤现象,提高大功率LED芯片的外量子效率,在ITO透明导电层与p-GaN间沉积插指型SiO_2电流阻挡层。采用等离子体增强化学气相沉积的方法沉积SiO_2薄膜,再经过光刻和BOE湿法刻蚀技术制备插指型SiO_2电流阻挡层。采用SimuLED仿真软件分析插指型SiO_2电流阻挡层对大功率LED芯片电流扩展性能的影响,研究插指型SiO_2电流阻挡层对大功率LED芯片外量子效率的影响。结果发现,插指型SiO_2电流阻挡层结构可以有效改善p电极附近的电流拥挤现象。与没有沉积插指型SiO_2电流阻挡层的大功率LED芯片相比,光输出功率得到显著的提高。在350 mA的输入电流下,沉积插指型SiO_2电流阻挡层后的大功率LED芯片的外量子效率提高了18.7%。  相似文献   

5.
All‐optical modulation based on silicon quantum dot doped SiOx:Si‐QD waveguide is demonstrated. By shrinking the Si‐QD size from 4.3 nm to 1.7 nm in SiOx matrix (SiOx:Si‐QD) waveguide, the free‐carrier absorption (FCA) cross section of the Si‐QD is decreased to 8 × 10−18 cm2 by enlarging the electron/hole effective masses, which shortens the PL and Auger lifetime to 83 ns and 16.5 ps, respectively. The FCA loss is conversely increased from 0.03 cm−1 to 1.5 cm−1 with the Si‐QD size enlarged from 1.7 nm to 4.3 nm due to the enhanced FCA cross section and the increased free‐carrier density in large Si‐QDs. Both the FCA and free‐carrier relaxation processes of Si‐QDs are shortened as the radiative recombination rate is enlarged by electron–hole momentum overlapping under strong quantum confinement effect. The all‐optical return‐to‐zero on‐off keying (RZ‐OOK) modulation is performed by using the SiOx:Si‐QD waveguides, providing the transmission bit rate of the inversed RZ‐OOK data stream conversion from 0.2 to 2 Mbit/s by shrinking the Si‐QD size from 4.3 to 1.7 nm.  相似文献   

6.
A series of merocyanines derived from 1,3‐indanedione and heterocycles of various electron‐donating properties was studied in detail. Their solvatochromic properties were explored in a wide range of solvent polarities to reveal the dependences of their chromacity and electronic structure on the key structural parameters – the properties of a donor heterocycle and the polymethine chain length. Also the dyes were studied by NMR spectroscopy and by quantum chemical calculations, both with the semiempirical AM1 and the non‐empirical density functional theory/B3LYP method. The solvatochromic properties of the explored dyes are rather close to those of merocyanines derived from malononitrile as acceptor group. Appreciable distinctions were observed only in protic ethanol; obviously, they are connected with the formation of solvent–solute H‐bonds in the case of 1,3‐indanedione derivatives. The electron‐acceptor properties of 1,3‐indanedione were found to be somewhat stronger in comparison with those of malononitrile even in aprotic solvents, contrary to the known literature data. Analysis of the merocyanines' molecular orbitals and simulation of their electronic spectra were carried out both in vacuum and in the solvent matrix, and the absorption electronic transitions were analyzed. Static nonlinear optical properties were calculated for both the new merocyanines and the corresponding cationic and anionic cyanine dyes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
The efficiency of high‐resolution pixel detectors for hard X‐rays is nowadays one of the major criteria which drives the feasibility of imaging experiments and in general the performance of an experimental station for synchrotron‐based microtomography and radiography. Here the luminescent screen used for the indirect detection is focused on in order to increase the detective quantum efficiency: a novel scintillator based on doped Lu2SiO5 (LSO), epitaxially grown as thin film via the liquid phase epitaxy technique. It is shown that, by using adapted growth and doping parameters as well as a dedicated substrate, the scintillation behaviour of a LSO‐based thin crystal together with the high stopping power of the material allows for high‐performance indirect X‐ray detection. In detail, the conversion efficiency, the radioluminescence spectra, the optical absorption spectra under UV/visible‐light and the afterglow are investigated. A set‐up to study the effect of the thin‐film scintillator's temperature on its conversion efficiency is described as well. It delivers knowledge which is important when working with higher photon flux densities and the corresponding high heat load on the material. Additionally, X‐ray imaging systems based on different diffraction‐limited visible‐light optics and CCD cameras using among others LSO‐based thin film are compared. Finally, the performance of the LSO thin film is illustrated by imaging a honey bee leg, demonstrating the value of efficient high‐resolution computed tomography for life sciences.  相似文献   

8.
The realization of an ultra‐fast source of heralded single photons emitted at the wavelength of 1540 nm is reported. The presented strategy is based on state‐of‐the‐art telecom technology, combined with off‐the‐shelf fiber components and waveguide non‐linear stages pumped by a 10 GHz repetition rate laser. The single photons are heralded at a rate as high as 2.1 MHz with a heralding efficiency of 42%. Single‐photon character of the source is inferred by measuring the second‐order autocorrelation function. For the highest heralding rate, a value as low as 0.023 is found. This not only proves negligible multi‐photon contributions but also represents one of the best measured values reported to date for heralding rates in the MHz regime. These performances, associated with a device‐like configuration, are key ingredients for both fast and secure quantum communication protocols.

  相似文献   


9.
10.
The coupled‐resonator‐induced transparency (CRIT) effect in parallel‐coupled double microring resonators (MRRs) has been widely studied, and various applications based on the CRIT have been demonstrated. As an application of the CRIT, we propose and demonstrate a directed logic circuit that can implement the XOR and XNOR operations. Two electrical signals applied to the two MRRs represent the two operands of the logical operations, and the operational results are represented by the output optical signal. As a proof‐of‐concept, the thermo‐optic modulating scheme is employed with an operational speed of 10 kbps.  相似文献   

11.
Highly efficient deep blue fluorescent material (SiPIM) based on phenanthro[9, 10‐d]imidazole (PPI) and triphenylsilane is designed and synthesized. SiPIM presents a narrow deep blue emission, high quantum yield, high thermal stability and good morphological stability. A non‐doped vacuum‐deposited device using SiPIM as active layer achieves an extremely high external quantum efficiency of 6.29% with true deep blue CIE coordinates of (0.163, 0.040). The solution‐processed device is also tried due to the good solubility of SiPIM, which displays a maximum ηext of 2.40% and CIE coordinates of (0.157, 0.041).  相似文献   

12.
A series of poly(4,4‐vinyltriphenylamine) based non‐conjugated polymer as host molecules are designed and studied by density functional theory. The results show that the substituent has a great influence on the properties of polymer. The parent molecule directly linked para‐carbazole, β‐pyrrole and triphenylamine are favorable to hole injection, and para‐carbazole could significantly increase ET of the host molecules. The large changes of structural parameters between the lowest triplet state and ground state can cause the decrease of ET. Moreover, parent molecule directly linked carbazole and triphenylamine units possess strong intramolecular charge transfer and low singlet and triplet energy difference (?EST). The calculated results also show that all designed host molecules are suitable for green emitter by comparing with the ET. S1 → S1 and T1 → T1 energy transfer mechanism between host and guest is thermodynamically feasible. In addition, host–guest model is built to study the charge transfer nature, and the results indicate that a good intermolecular charge transfer can be achieved between host and guest materials. In the designed host molecules, the N atom of parent molecule linked para‐carbazole substituent shows a great potential for the green phosphorescent polymer light‐emitting diodes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Through current efficiency measurements, obtained from the photoelectrochemical oxidation at TiO2 (rutile)/Ti anodes, further mechanistic information has been obtained regarding the TiO2 photosensitized oxidation of benzylic alcohols, ethers and 1,2‐diols in CH3CN. In deaerated medium, two electrons are captured by the semiconductor from all the considered substrates (one from the substrate, the second from the intermediate benzylic radical). In contrast, in aerated CH3CN, the number of TiO2‐captured electrons can be reduced to one because, depending on its oxidizability, the benzylic radical can be competitively captured by oxygen. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
15.
16.
In this study, density functional theory (DFT) and time‐dependent DFT (TD‐DFT) theory are use to shed light on how the number of thiophene rings in π‐conjugated system influence the absorption spectra and non‐linear optical (NLO) properties of dyes. The results of theoretical computation show that the absorption spectra are gradually broadened and red‐shifted (384–542 nm) with increasing number of thiophene units. The theoretical examination on non‐linear optical properties was performed on the key parameters of polarizabilty and hyperpolarizability. A remarkable increase in non‐linear optical response was observed on insertion of thiophene rings in π‐spacer. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
18.
To obtain direct evidence of the formation of the Ni–Mo–S phase on NiMo/Al2O3 catalysts under high‐pressure hydrodesulfurization conditions, a high‐pressure EXAFS chamber has been constructed and used to investigate the coordination structure of Ni and Mo species on the catalysts sulfided at high pressure. The high‐pressure chamber was designed to have a low dead volume and was equipped with polybenzimidazole X‐ray windows. Ni K‐edge k3χ(k) spectra with high signal‐to‐noise ratio were obtained using this high‐pressure chamber for the NiMo/Al2O3 catalyst sulfided at 613 K and 1.1 MPa over a wide k range (39.5–146 nm?1). The formation of Ni–Mo and Mo–Ni coordination shells was successfully proved by Ni and Mo K‐edge EXAFS measurement using this chamber. Interatomic distances of these coordination shells were almost identical to those calculated from Ni K‐edge EXAFS of NiMo/C catalysts sulfided at atmospheric pressure. These results support the hypothesis that the Ni–Mo–S phase is formed on the Al2O3‐supported NiMo catalyst sulfided under high‐pressure hydrodesulfurization conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号