首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An improved atom transfer radical polymerization (ATRP) process was developed for use in a waterborne miniemulsion system. To conduct a successful ATRP in a heterogeneous waterborne system, it is of great importance to ensure control over the polymerization process while preserving colloidal stability. Efforts devoted to optimization of reaction conditions and improvement in the overall productivity of the process allowed the development of a novel, practical initiation system for ATRP suitable for use in a miniemulsion procedure that can provide copolymers of well-defined composition (e.g., block copolymers) and topologies (e.g., multiarm polymer). © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3606–3614, 2003  相似文献   

2.
The properties of a ligand, including molecular structure and substituents, strongly affect the catalyst activity and control of the polymerization in atom transfer radical polymerization (ATRP). A new tetradentate ligand, N,N′‐bis(pyridin‐2‐ylmethyl‐3‐hexoxo‐3‐oxopropyl)ethane‐1,2‐diamine (BPED) was synthesized and examined as the ligand of copper halide for ATRP of styrene (St), methyl acrylate (MA), and methyl methacrylate (MMA), and compared with other analogous linear tetrdendate ligands. The BPED ligand was found to significantly promote the activation reaction: the CuBr/BPED complex reacted with the initiators so fast that a large amount of Cu(II)Br2/BPED was produced and thus the polymerizations were slow for all the monomers. The reaction of CuCl/BPED with the initiator was also fast, but by reducing the catalyst concentration or adding CuCl2, the activation reaction could be slowed to establish the equilibrium of ATRP for a well‐controlled living polymerization of MA. CuCl/BPED was found very active for the polymerization of MA. For example, 10 mol% of the catalyst relatively to the initiator was sufficient to mediate a living polymerization of MA. The CuCl/BPED, however, could not catalyze a living polymerization of MMA because the resulting CuCl2/BPED could not deactivate the growing radicals. The effects of the ligand structures on the catalysis of ATRP are also discussed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3553–3562, 2004  相似文献   

3.
Kinetic studies of the atom transfer radical polymerization (ATRP) of styrene are reported, with the particular aim of determining radical‐radical termination rate coefficients (<kt>). The reactions are analyzed using the persistent radical effect (PRE) model. Using this model, average radical‐radical termination rate coefficients are evaluated. Under appropriate ATRP catalyst concentrations, <kt> values of approximately 2 × 108 L mol?1 s?1 at 110 °C in 50 vol % anisole were determined. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5548–5558, 2004  相似文献   

4.
5.
Fundamentals of controlled/living radical polymerization (CRP) and Atom Transfer Radical Polymerization (ATRP), relevant to the synthesis of controlled polymer structures are described. Macromolecular brushes with star like structure are used as an example to illustrate synthetic power of ATRP.  相似文献   

6.
A new green solvent, cyclopentyl methyl ether (CPME), is used for the first time in solvent mixtures for the successful supplemental activator and reducing agent atom transfer radical polymerization (SARA ATRP) of both activated and non‐activated monomers. The SARA ATRP of methyl acrylate (MA), glycidyl methacrylate (GMA), styrene (Sty), and vinyl chloride (VC) in CPME‐based mixtures is studied and presents similar features to those reported in the literature using other SARA ATRP systems. Moreover, CPME‐based mixtures are suitable solvents for the controlled SARA ATRP of MA using different SARA agents, such as Fe(0), Cu(0), or Na2S2O4. The chemical structure and the retention of the chain‐end functionality of the polymers are confirmed by 1H NMR and MALDI‐TOF analyses and the preparation of a well‐defined PMA‐b‐PVC‐b‐PMA triblock copolymer. The method reported here presents an additional improvement in the search for new ecofriendly ATRP systems. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2722–2729  相似文献   

7.
The miniemulsion reverse atom transfer radical polymerization of butyl methacrylate was carried out with cetyltrimethylammonium bromide (CTAB) as the sole surfactant. The polymerizations were initiated with 2,2′‐azobis[2‐(2‐imidazolin‐2‐yl)propane] dihydrochloride and mediated with copper(II) bromide/tris[2‐di(2‐ethylhexyl acrylate)aminoethyl]amine. The living character was demonstrated by the linear increase in the number‐average molecular weight with conversion and the decreasing polydispersity index with conversion. The polymerizations were conducted at 90 °C with 1 wt % CTAB with respect to the monomer and produced a coagulum‐free latex with a mean particle diameter of 155 nm. The resulting latexes exhibited good shelf‐life stability. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1628–1634, 2006  相似文献   

8.
Living radical polymerizations of styrene were performed under emulsion atom transfer radical polymerization conditions with latexes prepared by a nanoprecipitation technique recently developed for the stable free‐radical polymerization process. Latexes were prepared by the precipitation of a solution of low‐molecular‐weight polystyrene in acetone into a solution of a surfactant in water. The resulting particles were swollen with styrene and then heated. The effects of various surfactants and hydrophobic ligands, the reaction temperature, and the ligand/copper(I) bromide ratio were studied. The best results were obtained with the nonionic surfactant Brij 98 in combination with the hydrophobic ligand N,N‐bis(2‐pyridylmethyl)octadecylamine and a ligand/copper(I) bromide ratio of 1.5 at a reaction temperature of 85–90 °C. Under these conditions, latexes with good colloidal stability with average particle diameters of 200 nm were obtained. The molecular weight distributions of the polystyrenes were narrow, although the experimental molecular weights were slightly larger than the theoretical ones because not all the macroinitiator appeared to reinitiate. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4027–4038, 2006  相似文献   

9.
A new “grafting from” strategy for grafting of different monomers (methacrylates, acrylates, and acrylamide) on poly(vinylidene fluoride) (PVDF) backbone is designed using atom transfer radical coupling (ATRC) and atom transfer radical polymerization (ATRP). 4‐Hydroxy TEMPO moieties are anchored on PVDF backbone by ATRC followed by attachment of ATRP initiating sites chosen according to the reactivity of different monomers. High graft conversion is achieved and grafting of poly(methyl methacrylate) (PMMA) exhibits high degree of polymerization (DPn = 770) with a very low graft density (0.18 per hundred VDF units) which has been increased to 0.44 by regenerating the active catalyst with the addition of Cu(0). A significant impact on thermal and stress–strain property of graft copolymers on the graft density and graft length is noted. Higher tensile strain and toughness are observed for PVDF‐g‐PMMA produced from model initiator but graft copolymer from pure PVDF exhibits higher tensile strength and Young's modulus. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 995–1008  相似文献   

10.
Simple mixing of an atom transfer radical polymerization (ATRP) mixture with zinc powder was demonstrated to result in rapid decolorizing of the solution and precipitation of elemental copper, using small amounts of silica gel as seeding material. The experiments revealed that the chemical reduction of copper by wetted zinc powder (i.e., 0.325 g/mmol copper) is fast and completed within less than 5 min. UV spectra of the filtered polymer solution showed no any trace of copper. Terminal bromoalkyl groups of the polymers in the ATRP solution were determined to be unchanged by short‐term contact with zinc powder at room temperature and a nearly complete reductive dehalogenation takes place only after 24 h of interaction, as evidenced by reaction of elemental zinc with a model compound, ethyl bromoacetate. Indeed, poly(methyl methacrylate) (PMMA) sample (Mn: 7900, polydispersity index: 1.09) isolated from ATRP mixture after the copper removal a by short contact with zinc powder (i.e., 15 min) was determined “still living” as confirmed by chain extension with styrene, ethyl acrylate, and t‐butyl acrylate monomers to give block copolymers. The presence of acetic acid was demonstrated to accelerate reductive dehalogenation of PMMA end‐groups by zinc and yields nonliving polymer within 2 h. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

11.
2‐[(Diphenylphosphino)methyl]pyridine (DPPMP) was successfully used as a bidentate ligand in the iron‐mediated atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) with various initiators and solvents. The effect of the catalytic system on ATRP was studied systematically. Most of the polymerizations with DPPMP ligand were well controlled with a linear increase in the number‐average molecular weights (Mn) versus conversion and relatively low molecular weight distributions (Mw/Mn = 1.10–1.3) being observed throughout the reactions, and the measured molecular weights matched the predicted values. Initially added iron(III) bromide improved the controllability of the polymerization reactions in terms of molecular weight control. The ratio of ligand to metal influenced the controllability of ATRP system, and the optimum ratio was found to be 2:1. It was shown that ATRP of MMA with FeX2/DPPMP catalytic system (X = Cl, Br) initiated by 2‐bromopropionitrile (BPN) was controlled more effectively in toluene than in polar solvents. The rate of polymerization increased with increasing the polymerization temperature and the apparent activation energy was calculated to be 56.7 KJ mol?1. In addition, reverse ATRP of MMA was able to be successfully carried out using AIBN in toluene at 80 °C. Polymerization of styrene (St) was found to be controlled well by using the PEBr/FeBr2/DPPMP system in DMF at 110 °C. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2922–2935, 2008  相似文献   

12.
Living‐radical polymerization of acrylates were performed under emulsion atom transfer radical polymerization (ATRP) conditions using latexes prepared by a nanoprecipitation technique previously employed and optimized for the polymerization of styrene. A macroinitiator of poly(n‐butyl acrylate) prepared under bulk ATRP was dissolved in acetone and precipitated in an aqueous solution of Brij 98 to preform latex particles, which were then swollen with monomer and heated. Various monomers (i.e. n‐butyl acrylate, styrene, and tert‐butyl acrylate) were used to swell the particles to prepare homo‐ and block copolymers from the poly(n‐butyl acrylate) macroinitiator. Under these conditions latexes with a relatively good colloidal stability were obtained. Furthermore, amphiphilic block copolymers were prepared by hydrolysis of the tert‐butyl groups and the resulting block copolymers were characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The bulk morphologies of the polystyrene‐b‐poly(n‐butyl acrylate) and poly(n‐butyl acrylate)‐b‐poly(acrylic acid) copolymers were investigated by atomic force microscopy (AFM) and small angle X‐ray scattering (SAXS). © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 625–635, 2008  相似文献   

13.
Polymer–silicate nanocomposites were synthesized with atom transfer radical polymerization (ATRP). An ATRP initiator, consisting of a quaternary ammonium salt moiety and a 2‐bromo‐2‐methyl propionate moiety, was intercalated into the interlayer spacings of the layered silicate. Subsequent ATRP of styrene, methyl methacrylate, or n‐butyl acrylate with Cu(I)X/N,N‐bis(2‐pyridiylmethyl) octadecylamine, Cu(I)X/N,N,N,N,N″‐pentamethyldiethylenetriamine, or Cu(I)X/1,1,4,7,10,10‐hexamethyltriethylenetetramine (X = Br or Cl) catalysts with the initiator‐modified silicate afforded homopolymers with predictable molecular weights and low polydispersities, both characteristics of living radical polymerization. The polystyrene nanocomposites contained both intercalated and exfoliated silicate structures, whereas the poly(methyl methacrylate) nanocomposites were significantly exfoliated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 916–924, 2004  相似文献   

14.
Ion exchange resin immobilized Co(II) catalyst with a small amount of soluble CuCl2/Me6TREN catalyst was successfully applied to atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) in DMF. Using this catalyst, a high conversion of MMA (>90%) was achieved. And poly(methyl methacrylate) (PMMA) with predicted molecular weight and narrow molecular weight distribution (Mw/Mn = 1.09–1.42) was obtained. The immobilized catalyst can be easily separated from the polymerization system by simple centrifugation after polymerization, resulting in the concentration of transition metal residues in polymer product was as low as 10 ppm. Both main catalytic activity and good controllability over the polymerization were retained by the recycled catalyst without any regeneration process. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1416–1426, 2008  相似文献   

15.
New supported catalytic systems based on the immobilization of a ligand onto supported (co)polymers were prepared, allowing copper immobilization onto a solid support during the atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA). These supported catalysts were elaborated by the ATRP of 2‐vinyl‐4,4‐dimethyl‐5‐oxazolone and/or styrene onto a Wang resin initiator. Two different approaches were used, involving well‐defined architectures synthesized by ATRP. First, a supported electrophilic homopolymer [Wang‐g‐poly(2‐vinyl‐4,4‐dimethyl‐5‐oxazolone)] was synthesized to obtain an azlactone ring at each repetitive unit, and a supported statistical copolymer [Wang‐g‐poly(2‐vinyl‐4,4‐dimethyl‐5‐oxazolone‐stat‐styrene)] was synthesized to introduce a distance between the azlactone rings. The azlactone‐based (co)polymers were then modified by a reaction with N,N,N′,N′‐tetraethyldiethylenetriamine (TEDETA) to create supported complexing sites for copper bromide. The ATRP of MMA was studied with these supported ligands, and a first‐order kinetic plot was obtained, but high polydispersity indices of the obtained poly(methyl methacrylate) were observed (polydispersity index > 2). On the other hand, the supported ATRP of styrene was performed, followed by the nucleophilic substitution of bromine by TEDETA (Wang‐g‐polystyrene–N,N,N′,N′‐tetraethyldiethylenetriamine) at the chain end of the grafted polystyrene chains. This strategy led the ligand away from the core bead, depending on the length of the polystyrene block (number‐average molecular weight determined by size exclusion chromatography = 1100–2250 g/mol). These supported complexes mediated a controlled polymerization of MMA, yielding polymers with controlled molar masses and low polydispersity indices. Moreover, after the polymerization, 96% of the initial copper was kept in the beads. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5316–5328, 2006  相似文献   

16.
An improved atom transfer radical polymerization (ATRP) of acrylamide was achieved in a glycerol/water (1:1 v/v) medium with 2‐halopropionamide initiators, CuX (X = Cl or Br) as catalysts, pentamethyldiethylenetriamine (PMDETA) as a ligand, and CuX2 (≥20 mol % CuX) and excess alkali halide (ca. 1 mol/dm3) as additives. The first‐order kinetic plots for the disappearance of the monomer at 130 °C were linear; this was a significant improvement over the results obtained earlier with the bipyridine ligand. However, even under such improved situations, about 7 mol % of the polymer chains were estimated to be formed dead. The polydispersity index was approximately 1.5. At a lower temperature (ca. 90 °C), a lower polydispersity index (1.24) was obtained for the bromide‐based initiating system. Chain‐extension experiments proved the living nature of the polymers. The presence of both extra halide ions and the monomer was necessary to take the CuX–PMDETA complex into solution. It was suggested that the soluble Cu(I) complex was formed with one PMDETA molecule acting as a monodentate ligand and with two halide ions and one acrylamide molecule occupying the other three coordination sites. Some support for the involvement of all three ligands (X?, PMDETA, and acrylamide) in the complex formation was obtained from ultraviolet–visible spectroscopy studies. The better ATRP with the PMDETA ligand was attributed to the better stability and lesser hydrolysis of the 1:1 Cu+2/PMDETA complex with respect the corresponding bipyridine complex. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2483–2494, 2004  相似文献   

17.
Well‐defined sulfonated polystyrene and block copolymers with n‐butyl acrylate (nBA) were synthesized by CuBr catalyzed living radical polymerization. Neopentyl p‐styrene sulfonate (NSS) was polymerized with ethyl‐2‐bromopropionate initiator and CuBr catalyst with N,N,N′,N′‐pentamethylethyleneamine to give poly(NSS) (PNSS) with a narrow molecular weight distribution (MWD < 1.12). PNSS was then acidified by thermolysis resulting in a polystyrene backbone with 100% sulfonic acid groups. Random copolymers of NSS and styrene with various composition ratios were also synthesized by copolymerization of NSS and styrene with different feed ratios (MWD < 1.11). Well defined block copolymers with nBA were synthesized by sequential polymerization of NSS from a poly(n‐butyl acrylate) (PnBA) precursor using CuBr catalyzed living radical polymerization (MWD < 1.29). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5991–5998, 2008  相似文献   

18.
The atom transfer radical bulk polymerization of styrene with FeX2 (X = Br or Cl)/tris(3,6‐dioxaheptyl) amine as the catalyst system was successfully implemented at 110 °C. The number‐average molecular weight of the polymers with a narrow molecular weight distribution (weight‐average molecular weight/number‐average molecular weight = 1.2–1.5) increased linearly with the monomer conversion and matched the predicted molecular weight. The polymerization rate, initiation efficiency, and molecular weight distribution were influenced by the selection of the initiator and iron halide. The high functionality of the halide end group in the obtained polymers was confirmed by both 1H NMR and a chain‐extension reaction. Because of its water solubility, the iron complexes could be removed easily from the reaction mixture through the washing of the polymerization mixture with water. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 483–489, 2006  相似文献   

19.
A stable nitroxyl radical functionalized with an initiating group for atom transfer radical polymerization (ATRP), 4‐(2‐bromo‐2‐methylpropionyloxy)‐2,2,6,6‐tetramethyl‐1‐piperidinyloxy (Br‐TEMPO), was synthesized by the reaction of 4‐hydroxyl‐2,2,6,6‐tetramethyl‐1‐piperidinyloxy with 2‐bromo‐2‐methylpropionyl bromide. Stable free radical polymerization of styrene was then carried out using a conventional thermal initiator, dibenzoyl peroxide, along with Br‐TEMPO. The obtained polystyrene had an active bromine atom for ATRP at the ω‐end of the chain and was used as the macroinitiator for ATRP of methyl acrylate and ethyl acrylate to prepare block copolymers. The molecular weights of the resulting block copolymers at different monomer conversions shifted to higher molecular weights and increased with monomer conversion. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2468–2475, 2006  相似文献   

20.
The reverse atom transfer radical polymerization (RATRP) of methyl methacrylate (MMA) was successfully carried out under pulsed microwave irradiation (PMI) at 69 °C with N,N‐dimethylformamide as a solvent and with azobisisobutyronitrile (AIBN)/CuBr2/tetramethylethylenediamine as an initiation system. PMI resulted in a significant increase in the polymerization rate of RATRP. A 10.5% conversion for a polymer with a number‐average molecular weight of 34,500 and a polydispersity index of 1.23 was obtained under PMI with a mean power of 4.5 W in only 52 min, but 103 min was needed under a conventional heating process (CH) to reach a 8.3% conversion under identical conditions. At different [MMA]0/[AIBN]0 molar ratios, the apparent rate constant of polymerization under PMI was 1.5–2.3 times larger than that under CH. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3823–3834, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号