首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N‐Acryloylglycinamide was polymerized via the reversible addition fragmentation transfer process without sacrificing its key property, the upper critical solution temperature in water. This could be achieved by choosing an appropriate nonionic initiator [2,2′‐azobis(4‐methoxy‐2.4‐dimethyl valeronitrile) (V‐70)] and nonionic chain‐transfer agent (cyanomethyl dodecyl trithiocarbonate). A good molar mass control was accomplished as proved by the linear increase of molar mass with conversion, a chain extension experiment, and low dispersity. The influence of molar mass, polymer end groups, or salt concentration on the cloud point was analyzed by turbidimetry. Polymer end groups exerted a distinct effect on the cloud points, whereas the influence increased with decreasing molar masses. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

2.
Radical polymerization of N‐isopropylacrylamide (NIPAAm) in toluene at low temperatures, in the presence of fluorinated‐alcohols, produced heterotactic polymer comprising an alternating sequence of meso and racemo dyads. The heterotacticity reached 70% in triads when polymerization was carried out at ?40 °C using nonafluoro‐tert‐butanol as the added alcohol. NMR analysis revealed that formation of a 1:1 complex of NIPAAm and fluorinated‐alcohol through C?O···H? O hydrogen bonding induces the heterotactic specificity. A mechanism for the heterotactic‐specific polymerization is proposed. Examination of the phase transition behavior of aqueous solutions of heterotactic poly(NIPAAm) revealed that the hysteresis of the phase transition between the heating and cooling cycles depended on the average length of meso dyads in poly(NIPAAm). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2539–2550, 2009  相似文献   

3.
The modulation of the cloud point of aqueous poly(N,N‐diethylacrylamide) solutions via the formation of supramolecular cyclodextrin complexes with hydrophobic end groups, namely adamantyl, tert‐butyl phenyl and azobenzene, synthesized via RAFT polymerization is described. The dependence of the apparent cloud points after cyclodextrin complexation is investigated with respect to the type and quantity of the guest end group, the polymer chain length and the cyclodextrin/end group ratio. Furthermore, the effect is reversed via the addition of guest molecules or via biocompatible enzymatic degradation of the cyclodextrins entire.

  相似文献   


4.
We report on novel diblock copolymers of poly(N‐vinylcaprolactam) (PVCL) and poly(N‐vinyl‐2‐pyrrolidone) (PVPON) (PVCL‐b‐PVPON) with well‐defined block lengths synthesized by the MADIX/reversible addition‐fragmentation chain transfer (RAFT) process. We show that the lower critical solution temperatures (LCST) of the block copolymers are controllable over the length of PVCL and PVPON segments. All of the diblock copolymers dissolve molecularly in aqueous solutions when the temperature is below the LCST and form spherical micellar or vesicular morphologies when temperature is raised above the LCST. The size of the self‐assembled structures is controlled by the molar ratio of PVCL and PVPON segments. The synthesized homopolymers and diblock copolymers are demonstrated to be nontoxic at 0.1–1 mg mL?1 concentrations when incubated with HeLa and HEK293 cancer cells for various incubation times and have potential as nanovehicles for drug delivery. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2725–2737  相似文献   

5.
We report on the synthesis of novel poly(N‐isopropylacrylamide)‐b‐poly(oligo ethylene glycol methyl ether acrylate) (PNIPAM‐b‐POEGA) thermoresponsive block copolymers using reversible addition–fragmentation chain transfer polymerization methodologies. The synthesized block copolymers are characterized by gel permeation chromatography, nuclear magnetic resonance, Fourier transform infrared (FTIR) techniques in terms of molecular weight and composition. Their thermoresponsive self‐assembly in aqueous media is investigated using dynamic and static light scattering. The PNIPAM‐b‐POEGA thermoresponsive block copolymers formed aggregates in water by increasing the temperature above the lower critical solution temperature value of PNIPAM block. Solution pH seems to affect the self‐assembly behavior in some cases due to the presence of ? COOH end groups. Therefore, the copolymers were utilized as “smart” nanocarries for the hydrophobic drug indomethacin, implementing a novel encapsulation protocol taking advantage of the thermoresponsive character of the PNIPAM block. The empty and loaded self‐assembled nanocarriers systems were studied by light scattering techniques, ultraviolet–visible, and FTIR spectroscopy, which gave information on the size and structure of the nanocarriers, the drug loading content and the interactions between the drug and the components of the block copolymers. Drug loaded nanostructures show stability at room temperature, due to active drug/block copolymer interactions. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1467–1477  相似文献   

6.
An organic–inorganic copolymer with polyhedral oligomeric silsesquioxane (POSS) and xanthate moieties in the main chain was synthesized via the polycondensation between 3,13‐di(2‐bromopropionate)propyl double‐decker silsesquioxane (DDSQ) and 1,4‐di(xanthate potassium)butane. This hybrid copolymer was used as the macromolecular chain transfer agent to obtain the organic–inorganic poly(N‐vinylpyrrolidone) (PVPy) copolymers via a reversible addition fragmentation chain transfer/macromolecular design via the interchange of xanthates (RAFT/MADIX) polymerization approach; the polymerization behavior of N‐vinyl pyrrolidone was investigated by means of gel permeation chromatography. It was found that the polymerization was in a living and controlled manner. Transmission electron microscopy (TEM) showed that the organic–inorganic PVPy copolymers with DDSQ in the main chains were microphase‐separated in bulks. Compared to plain PVPy, the organic–inorganic PVPy copolymers displayed the decreased glass transition temperatures (Tgs); the decreased Tgs are attributable to the effect of the introduced DDSQ cages on the packing of PVPy chains as evidenced by means of Fourier transform infrared spectroscopy (FTIR). In water, the organic–inorganic PVPy copolymers can self‐assemble into the spherical nano‐objects with the size of 20–50 nm in diameter. In the self‐assembled nano‐objects, the aggregates of the hydrophobic DDSQ constituted the cores of the polymeric micelles whereas the PVPy chains between the DDSQ behaved as the coronas of the polymeric micelles. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2949–2961  相似文献   

7.
1‐Vinyl‐2‐(hydroxymethyl)imidazole ( 2 ) is synthesized by a procedure described in the literature. Corresponding copolymers with upper critical solution temperature (UCST)‐type transitions in water and high‐glass transition temperatures (Tg) are prepared by free radical copolymerization with N‐vinylimidazole ( 1 ). Depending on the copolymer composition, the cloud point can be varied between 19 and 41 °C. As the copolymer composition is identical with the monomer feed ratio, the cloud point can be easily tuned in the desired range. Furthermore, a distinctive pH‐dependence and salt effect can be observed.

  相似文献   


8.
Poly[N‐(4‐vinylbenzyl)‐N,N‐dibutylamine hydrochloride] trithiocarbonate, which contains the reactive trithiocarbonate group and the appending surface‐active groups, is used as both surfactant and macromolecular reversible addition‐fragmentation chain transfer (macro‐RAFT) agent in batch emulsion polymerization of styrene. Under the conditions at high monomer content of ~20 wt % and with the molecular weight of the macro‐RAFT agent ranging from 4.0 to 15.0 kg/mol, well‐controlled batch emulsion RAFT polymerization initiated by the hydrophilic 2‐2′‐azobis(2‐methylpropionamidine) dihydrochloride is achieved. The polymerization leads to formation of nano‐sized colloids of the poly[N‐(4‐vinylbenzyl)‐N,N‐dibutylamine hydrochloride]‐b‐ polystyrene‐b‐poly[N‐(4‐vinylbenzyl)‐N,N‐dibutylamine hydrochloride] triblock copolymer. The colloids generally have core‐shell structure, in which the hydrophilic block forms the shell and the hydrophobic block forms the core. The molecular weight of the triblock copolymer linearly increases with increase in the monomer conversion, and the values are well‐consistent with the theoretical ones. The molecular weight polydispersity index of the triblock copolymer is below 1.2 at most cases of polymerization. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

9.
Chitosan (CS), CS‐poly(N‐isopropylacrylamide)(PNIPAM) and their dyed (pyrene) hydrogels were prepared using glutaraldehyde (Glu) as a crosslinker. The gelation rate, swelling behaviors in ethanol/water mixtures, electricity‐induced contraction and thermoresponse of the gels were investigated using fluorescence probe technique. Results showed that CS/Glu, and PNIPAM‐containing CS/Glu gels exhibited similar properties in all aspects examined, except that the transparence of the CS‐PNIPAM/Glu gel is very dependent upon the temperature. The CS‐PNIPAM/Glu gel is transparent below 30°C, whereas opaque above 32°C. It is expected that this observation may be useful for the design and preparation of new kinds of hydrogel devices. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 474–481, 2000  相似文献   

10.
New, water soluble poly(glycidol) (PGl) macroinitiators for atom transfer radical polymerization (ATRP) were synthesized. This new class of macroinitiators were prepared in a three‐step process. First, series of well‐defined ω‐hydroxyl functional poly(glycidol acetal)s with different molecular weights was synthesized via anionic polymerization followed by quantitative termination of anionically growing active sites. End capping was achieved by treatment of living chain ends with water. The living nature of the system and termination reaction is discussed. In the second stage, monofunctional poly(glycidol acetal)s were functionalized by esterification with 2‐chloropropionyl chloride. Finally, selective deprotection (hydrolysis) of acetal protective groups was performed. As simultaneous partial cleavage of ester bond of attached ATRP moieties was unavoidable, the final functionality of macroinitiator calculated from 1H NMR varied in the range 85–95%. The obtained (2‐chloropropionyl) poly(glycidol) macroinitiator with DP = 55 and 90% functionality was successfully used in ATRP polymerization of N‐isopropylacrylamide (NIPAAm) at room temperature in the DMF/water mixture. Linear block copolymers with relatively narrow molecular weight distribution and controlled composition were obtained and characterized with 1H NMR and SEC‐MALLS measurements. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2488–2499, 2008  相似文献   

11.
Poly(N‐isopropylacrylamide) (pNIPAAm), a well‐studied, biologically inert polymer that undergoes a sharp aqueous thermal transition at 32 °C, has been a subject of widespread interest for possible biological applications. A major hindrance to its successful application is due to the difficulty of maintaining a sharp transition when the polymer is modified for a physiological transition temperature, especially in isotonic solutions. Current copolymer blends raise the transition temperature but also make the transition significantly broader. We have combined the use of reversible addition‐fragmentation chain transfer (RAFT) polymerization with tacticity control to synthesize well‐defined pNIPAAm that demonstrates sharp transitions under physiological conditions. By selecting a RAFT agent with appropriate end groups, controlling molecular weight, and increasing the racemo diad content, we were able to increase the thermal transition temperature of pure pNIPAAm to a sharp transition at 37.6 °C under isotonic conditions. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

12.
Poly(N‐acryloyl‐N′‐methylpiperazine) (PAMP) forms complexes with four strong acidic polymers, namely, poly(styrenesulfonic acid), poly(vinylphosphonic acid), poly(acrylic acid) and poly(methacrylic acid) in ethanol/water (1:1) solution. The nature of interpolymer interactions in various complexes was studied by Fourier transform infrared (FTIR) spectroscopy and X‐ray photoelectron spectroscopy (XPS). Both the carbonyl oxygen and the amide nitrogen of PAMP are involved in hydrogen‐bonding interactions. Some of the amine nitrogens of PAMP are protonated and therefore PAMP also interacts with the acidic polymers through ionic interactions. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 501–508, 2000  相似文献   

13.
Controlled radical polymerizations of N‐ethylmethylacrylamide (EMA) by atom transfer radical polymerization and reversible addition‐fragmentation chain transfer processes were investigated in detail for the first time, employing complementary characterization techniques including gel permeation chromatography, 1H NMR spectroscopy, and matrix‐assisted laser desorption ionization time‐of‐flight mass spectrometry. In both cases, relatively good control of the polymerization of EMA was achieved, as revealed by the linear evolution of molecular weights with monomer conversions and the low polydispersity of poly(N‐ethylmethylacrylamide) (PEMA). The thermal phase transitions of well‐defined PEMA homopolymers with polydispersities less than 1.2 and degrees of polymerization up to 320 in aqueous solution were determined by temperature‐dependent turbidity measurements. The obtained cloud points (CPs) vary in the range of 58–68 °C, exhibiting inverse molecular weight and polymer concentration dependences. Moreover, the presence of a carboxyl group instead of an alkyl one at the PEMA chain end can elevate its CP by ~3–4 °C. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 60–69, 2008  相似文献   

14.
Nonspecific interaction is a key parameter affecting the efficiency of proteins, nucleic acids or cell separation. Currently, many approaches to introduce antifouling properties to materials have been developed. Among these, surface modification with polymer brushes plays a prominent role. The aim of this study was to synthesize new magnetic microspheres grafted with poly(N,N‐dimethylacrylamide) (PDMA) that resist nonspecific protein adsorption. Monodisperse macroporous poly(2‐hydroxyethyl methacrylate) (PHEMA) microspheres, 4 μm in size, were synthesized by a multiple swelling polymerization method. To render the microspheres magnetic, iron oxide was precipitated inside the microsphere pores. Functional carboxyl groups, introduced by the hydrolysis of the 2‐(methacryloyl)oxyethyl acetate (HEMA‐Ac) comonomer, were used to react with propargylamine, followed by coupling of a chain transfer agent via an azide‐alkyne click reaction. PDMA was grafted from the PHEMA microspheres using reversible addition‐fragmentation chain transfer polymerization (RAFT), resulting in surfaces with more than 81 wt % PDMA attached. The successful modification of the microspheres was confirmed by XPS. The magnetic microspheres grafted with PDMA showed excellent antifouling properties as tested in bovine serum protein solutions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1036–1043  相似文献   

15.
The radical polymerizations of N‐alkylacrylamides, such as N‐methyl‐(NMAAm), Nn‐propyl‐(NNPAAm), N‐benzyl‐(NBnAAm), and N‐(1‐phenylethyl)acrylamides (NPhEAAm), at low temperatures were investigated in the absence or presence of hexamethylphosphoramide (HMPA) and 3‐methyl‐3‐pentanol (3Me3PenOH), which induced the syndiotactic specificities in the radical polymerization of N‐isopropylacrylamide (NIPAAm). In the absence of the syndiotactic‐specificity inducers, the syndiotacticities of the obtained polymers gradually increased as the bulkiness of the N‐substituents increased. Both HMPA and 3Me3PenOH induced the syndiotactic specificities in the NNPAAm polymerizations as well as in the NIPAAm polymerizations. The addition of 3Me3PenOH into the polymerizations of NMAAm significantly induced the syndiotactic specificities, whereas the tacticities of the obtained polymers were hardly affected by adding HMPA. In the polymerizations of bulkier monomers, such as NBnAAm and NPhEAAm, HMPA worked as the syndiotactic specificity inducer at higher temperatures, whereas 3Me3PenOH hardly influenced the stereospecificity, regardless of the temperatures. The phase‐transition behaviors of the aqueous solutions of poly(NNPAAm)s were also investigated. It appeared that the poly (NNPAAm) with racemo dyad content of 70% exhibited unusual large hysteresis between the heating and cooling processes. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4575–4583, 2008  相似文献   

16.
A series of narrowly distributed poly(N‐isopropylacrylamide) (PNIPAM) with molecular weight ranging from 8 × 104 to 2.3 × 107 g/mol were prepared by a combination of free radical polymerization and fractional precipitation. An ultrasensitive differential scanning calorimetry was used to study the effect of molecular weight on the thermal volume transition of these PNIPAM samples. The specific heat peak of the transition temperature (Tp,0) was obtained by extrapolation to zero heating rate (HR) because of the linear dependence of the transition temperature (Tp) on the HR. The relation between Tp,0 and the degree of polymerization (N) was investigated. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1388–1393, 2010  相似文献   

17.
Novel thermo‐responsive poly(N‐isopropylacrylamide)‐block‐poly(l ‐lactide)‐block‐poly(N‐isopropylacylamide) (PNIPAAm‐b‐PLLA‐b‐PNIPAAm) triblock copolymers were successfully prepared by atom transfer radical polymerization of NIPAAm with Br‐PLLA‐Br macroinitiator, using a CuCl/tris(2‐dimethylaminoethyl) amine (Me6TREN) complex as catalyst at 25 °C in a N,N‐dimethylformamide/water mixture. The molecular weight of the copolymers ranges from 18,000 to 38,000 g mol?1, and the dispersity from 1.10 to 1.28. Micelles are formed by self‐assembly of copolymers in aqueous medium at room temperature, as evidenced by 1H NMR, dynamic light scattering (DLS) and transmission electron microscopy (TEM). The critical micelle concentration determined by fluorescence spectroscopy ranges from 0.0077 to 0.016 mg mL?1. 1H NMR analysis in selective solvents confirmed the core‐shell structure of micelles. The copolymers exhibit a lower critical solution temperature (LCST) between 32.1 and 32.8 °C. The micelles are spherical in shape with a mean diameter between 31.4 and 83.3 nm, as determined by TEM and DLS. When the temperature is raised above the LCST, micelle size increases at high copolymer concentrations due to aggregation. In contrast, at low copolymer concentrations, decrease of micelle size is observed due to collapse of PNIPAAm chains. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3274–3283  相似文献   

18.
A new approach on usage of S‐1‐dodecyl‐S′‐(α,α′‐dimethyl‐α″‐acetic acid)trithiocarbonate (DDAT)‐covalently functionalized graphene oxide (GO) as reversible addition fragmentation chain transfer (RAFT) agent for growing of poly(N‐vinylcarbazole) (PVK) directly from the surface of GO was described. The PVK polymer covalently grafted onto GO has Mn of 8.05 × 103, and a polydispersity of 1.43. The resulting material PVK‐GO shows a good solubility in organic solvents when compared to GO, and a significant energy bandgap of ~2.49 eV. Bistable electrical switching and nonvolatile rewritable memory effect, with a turn‐on voltage of about ?1.7 V and an ON/OFF state current ratio in excess of 103, are demonstrated in the Al/PVK‐GO/ITO structure. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
Terpolymers composed of Nn‐propylacrylamide (NPAAm), butyl methacrylate (BMA), and N,N‐diethylaminoethyl methacrylate (DEAEMA) were prepared in an attempt to investigate the temperature‐induced phase transition and its mechanism. Poly(NPAAm) showed the lower critical solution temperature (LCST) around 24°C in water. With the incorporation of DEAEMA with NPAAm, the LCST change was characterized by an initial increase. However, the LCST was shifted to the lower temperature at the later stage. This might be explained in terms of hydrophilic/hydrophobic contribution of DEAEMA to the LCST. The swelling behavior of copolymer gel in the various solvents and spin‐lattice relaxation time (T1) study by NMR strongly suggested the hydrophilic/hydrophobic contribution of DEAEMA to the LCST depending on the local environment. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1407–1411, 1999  相似文献   

20.
The synthesis of a molecular brush was accomplished by combining step‐growth polymerization and reversible addition fragmentation chain transfer (RAFT) polymerization in a “grafting from” methodology. A symmetrical N‐alkyl urea peptoid sixmer containing alkyne functional groups was prepared using a divergent strategy, and the structure of the product was confirmed using NMR spectroscopy and mass spectrometry. A step‐growth process was used to prepare a linear poly(N‐alkyl urea peptoid) by reacting the diamine‐functionalized N‐alkyl urea peptoid sixmer with a diisocyanate. RAFT chain transfer agents were coupled to the poly(N‐alkyl urea peptoid) backbone through a copper‐catalyzed azide/alkyne cycloaddition reaction. The afforded macro‐RAFT agent was used to sequentially polymerize styrene and tert‐butyl acrylate block copolymer arms from the poly(N‐alkyl urea peptoid) backbone. The tert‐butyl groups were removed using dilute trifluoroacetic acid affording hydrophilic polyacrylic acid segments. The molecular brushes were observed to generate micelles in aqueous solution. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号