首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two neutral salicylaldiminato methyl pyridine nickel(II) complexes were synthesized and evaluated for ethylene polymerization. Each catalyst bears a methoxy group in the 3‐position and a halogen atom in the 5‐position of the salicyl ligand, chlorine in case of catalyst 3a and bromine in 3b . Molecular structures of the catalysts were obtained by X‐ray crystallography. The resulting polymerization activities, for example, indicated by a maximum turnover frequency of 4,870 mol ethylene/(mol Ni × h) for 1‐h runs obtained with 3a , were higher than those of similar catalysts at comparable conditions reported in the literature. Catalyst 3a was slightly more active than catalyst 3b . The polymers are branched as measured by 1H NMR and 13C NMR. This was also reflected in the melting temperatures between 76 and 113 °C obtained by differential scanning calorimetry. By using gel permeation chromatography measurements, it was determined that the Mw of the polymers ranges between about 5,400 and 21,600 g/mol. In particular, the effect of the polymerization temperature on the catalyst activity, degree of branching, and molecular weight properties has been described. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

2.
A series of 1‐(2,6‐dibenzhydryl‐4‐fluorophenylimino)‐ 2‐aryliminoacenaphthylene derivatives ( L1–L5 ) and their halonickel complexes LNiX2 (X = Br, Ni1–Ni5 ; X = Cl, Ni6–Ni10 ) are synthesized and well characterized. The molecular structures of representative complexes Ni2 and Ni4 are confirmed as the distorted tetrahedron geometry around nickel atom by the single crystal X‐ray diffraction. Upon activation with methylaluminoxane, all nickel complexes show high activities up to 1.49 × 107 g of PE (mol of Ni)?1 h?1 toward ethylene polymerization, producing polyethylenes with high branches and molecular weights up to 1.62 × 106 g mol?1 as well as narrow polydispersity. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1369–1378  相似文献   

3.
The P,O‐chelated shell higher olefin process (SHOP) type nickel complexes are practical homogeneous catalysts for the industrial preparation of linear low‐carbon α‐olefins from ethylene. We describes that a facile synthetic route enables the modulation of steric hindrance and electronic nature of SHOP‐type nickel complexes. A series of sterically bulky SHOP‐type nickel complexes with variable electronic nature, {[4‐R‐C6H4C(O) = C‐PArPh]NiPh (PPh3); Ar = 2‐[2′,6′‐(OMe)2C6H3]C6H4; R = H ( Ni1 ); R = OMe ( Ni2 ); R = CF3 ( Ni3 )}, were prepared and used as single component catalysts toward ethylene polymerization without using any phosphine scavenger. These nickel catalysts exhibit high thermal stability during ethylene polymerization and result in highly crystalline linear α‐olefinic solid polymer. The catalytic performance of the SHOP‐type nickel complexes was significantly improved by introducing a bulky ortho‐biphenyl group on the phosphorous atom or an electron‐withdrawing trifluoromethyl on the backbone of the ligand, indicating steric and electronic effects play critical roles in SHOP‐type nickel complexes catalyzed ethylene polymerization.  相似文献   

4.
A series of neutral Ni(II)-salicylaldiminato complexes substituted with perfluorooctyl- and trifluoromethyl groups, [Ni{kappa(2)-N,O-6-C(H)==NAr-2,4-R'(2)C(6)H(2)O}(Me)(pyridine)] (6 a: Ar=2,6-{4-(F(17)C(8))C(6)H(4)}(2)C(6)H(3), R'=I; 6 b: Ar=2,6-{4-(F(3)C)C(6)H(4)}(2)C(6)H(3), R'=I; 6 c: Ar=2,6-{3,5-(F(3)C)(2)C(6)H(3)}(2)C(6)H(3), R'=3,5-(F(3)C)(2)C(6)H(3); 6 d: Ar=2,6-{4-(F(17)C(8))C(6)H(4)}(2)C(6)H(3), R'=3,5-(F(3)C)(2)C(6)H(3); 6 e: Ar=2,6-{3,5-(F(3)C)(2)C(6)H(3)}(2)C(6)H(3), R'=I) were studied as catalyst precursors for ethylene polymerisation in supercritical CO(2). Catalyst precursors 6 a and 6 c, which are soluble in scCO(2), afford the highest polymer yields, corresponding to 2 x 10(3) turnovers. Semicrystalline polyethylene (M(n) typically 10(4) g mol(-1)) is obtained with variable degrees of branching (11 to 24 branches per 1000 carbon atoms, predominantly Me branches) and crystallinities (54 to 21 %), depending on the substitution pattern of the catalyst.  相似文献   

5.
Novel nickel(II) bisbenzimidazole complexes were prepared via a three‐step synthetic procedure consisting of aniline/diacid condensation, ligand N‐alkylation, and metal complexation. The complexes were characterized by X‐ray crystallography and found to possess a pseudotetrahedral geometry. Upon activation with methylaluminoxane, these nickel bisbenzimidazoles did not polymerize simple olefins (e.g., ethylene, propylene, and 1‐butene) but were found to carry out the rapid and efficient polymerization of norbornene. The polynorbornene products were characterized by gel permeation chromatography/light scattering, 13C NMR, and IR, and their Mark–Houwink and dn/dc parameters were determined. The molecular weights of the polynorbornenes were very high (weight‐average molecular weight = 587,000–797,000 g/mol). 13C NMR suggested that the polymerization occurred via vinyl addition (i.e., a 2,3‐linked polymer); no ring‐opened product was observed. Thermogravimetric analysis indicated that the polynorbornenes were stable up to 400 °C under nitrogen. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2095–2106, 2003  相似文献   

6.
A series of 2‐aminopyridine Ni(II) complexes bearing different substituent groups {(2‐PyCH2NAr)NiBr, Ar = 2,4,6‐trimethylphenyl ( 3a) , 2,6‐dichlorophenyl ( 3b ), 2,6‐dimethylphenyl ( 3c) , 2,6‐diisopropylphenyl ( 3d ), 2,6‐difluorophenyl ( 3e ); (2‐PyCH2NHAr)2NiBr2, Ar = 2,6‐diisopropylphenyl ( 4a )} have been synthesized and investigated as precatalysts for ethylene polymerization in the presence of methylaluminoxane (MAO). High molecular weight branched polymers as well as short‐chain oligomers were simultaneously produced with these complexes. Enhancing the steric bulk of the ortho‐aryl‐substituents of the catalyst resulted in higher ratio of solid polymer to oligomer and higher molecular weight of the polymer. With ortho‐haloid‐substitution, the catalysts afforded a product with low polymer/oligomer ratio ( 3b ) and even only oligomers ( 3e ) in which C14H28 had the maximum content. Compared with complex 3d containing ionic ligand, complex 4a containing neutral ligand exhibited obviously low catalytic activity for ethylene polymerization. The molecular weight, molecular weight distribution, and microstructure of the resulted polymer were characterized by gel permeation chromatography and 13C NMR spectrogram. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1618–1628, 2008  相似文献   

7.
A series of new α‐diimine nickel(II) catalysts bearing bulky chiral sec‐phenethyl groups have been synthesized and characterized. The molecular structure of representative chiral ligand, bis[N,N′‐(4‐methyl‐2,6‐di‐sec‐phenethylphenyl)imino]‐1,2‐dimethylethane rac‐1c and chiral complexes, {bis[N,N′‐(4‐methyl‐2‐sec‐phenethylphenyl)imino]‐2,3‐butadiene}dibromidonickel rac‐2a and bis{bis[N,N′‐(4‐methyl‐2‐sec‐phenethylphenyl)imino]‐2,3‐butadiene}dibromidonickel rac‐2b, were confirmed by X‐ray crystallographic analysis. Complex rac‐2c bearing two chiral sec‐phenethyl groups in the ortho‐aryl position and a methyl group in the para‐aryl position, activated by diethylaluminum chloride (DEAC), showed highly catalytic activity for the polymerization of ethylene [4.12 × 106 g PE (mol Ni.h.bar)?1], and produced highly branched polyethylenes under low ethylene pressure (branching degree: 104, 118 and 126 branches/1000 C at 20, 40 and 60°C, respectively). Chiral 20‐electron bis‐α‐diimine Ni(II) complex rac‐2b also exhibited high activity toward ethylene polymerization [1.71 × 106 g PE (mol Ni · h · bar)?1]. The type and amount of branches of the polyethylenes obtained were determined by 1H and 13C NMR. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Vanadium complexes with tetradentate salen‐type ligands were first time explored in ethylene polymerizations. The effects of the vanadium complex structure, the alkyl aluminum cocatalysts type (EtAlCl2, Et2AlCl, Et3Al, and MAO), and the polymerization conditions (Al/V molar ratio, temperature) on polyethylene yield were explored. It was found that EtAlCl2 in conjunction with investigated vanadium complexes produced the most efficient catalytic systems. It was shown, moreover, that the structural changes of the tetradentate salen ligand (type of bridge which bond donor nitrogen atoms and type of substituent on aryl rings) affected activity of the catalytic system. The complexes containing ligands with cyclohexylene bridges were more active than those with ethylene bridges. Furthermore, the presence of electron‐withdrawing groups at the para position and electron‐donating substituents at the ortho position on the aryl rings of the ligands resulted in improved activity in relation to the systems with no substituents (with the exception of bulky t‐Bu group). The results presented also revealed that all vanadium complexes activated by common organoaluminum compounds gave linear polyethylenes with high melting points (134.8–137.6 °C), high molecular weights, and broad molecular weight distribution. The polymer produced in the presence of MAO possesses clearly lower melting point (131.4 °C) and some side groups (around 9/1000 C). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6940–6949, 2008  相似文献   

9.
The previously unknown methallylnickel 2-diorganophosphanylphenolates (R=Ph, cHex) were synthesized and found to catalyze the polymerization of ethylene. To explore the potential for ligand-tuning, a variety of P-alkyl- and P-phenyl-2-phosphanylphenols was synthesized and allowed to react with [Ni(cod)(2)] (cod=1,5-cyclooctadiene) or with NiBr(2).DME and NaH. The complexes formed in situ with [Ni(cod)(2)] are generally active as ethylene polymerization catalysts with all the ligands tested, whereas the latter systems are inactive when 2-dialkylphosphanylphenols are applied. M(w) values, ranging from about 1000 to about 100000 g mol(-1), increase for various R(2)P groups in the order R=Ph相似文献   

10.
A series of unsymmetrical 1‐[2,6‐bis(bis(4‐fluorophenyl)methyl)‐4‐MeOC6H2N]‐2‐aryliminoacenaphthene‐nickel(II) halides has been synthesized and fully characterized by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance (1H NMR), 13C NMR, and 19F NMR spectroscopy as well as elemental analysis. The structures of Ni1 and Ni6 have been confirmed by the single‐crystal X‐ray diffraction. On activation with cocatalysts either ethylaluminum sesquichloride or methylaluminoxane, all the title nickel complexes display high activities toward ethylene polymerization up to 16.14 × 106 g polyethylene (PE) mol?1(Ni) h?1 at 30 °C, affording PEs with both high branches (up to 103 branches/1000 carbons) and molecular weight (1.12 × 106 g mol?1) as well as narrow molecular weight distribution. High branching content of PE can be confirmed by high temperature 13C NMR spectroscopy and differential scanning calorimetry. In addition, the PE exhibited remarkable property of thermoplastic elastomers (TPEs) with high tensile strength (σb = 21.7 MPa) and elongation at break (εb = 937%) as well as elastic recovery (up to 85%), indicating a better alternative to commercial TPEs. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 130–145  相似文献   

11.
A new diphosphinoamine ligand [Ph2PN(p‐C6H4OMe)PPh2] was prepared through aminolysis reaction of p‐methoxyaniline with Ph2PCl in the presence of NEt3. Consequently, the corresponding nickel (II) diphosphinoamine complex [(p‐C6H4OMe)N(PPh2)2NiCl2] was synthesized and characterized. The solid‐state structure of the complex was determined by single‐crystal X‐ray diffraction. As combined with methylaluminoxane (MAO), the complex displayed high catalytic activity for vinyl polymerization of norbornene. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
The homopolymerization of ethylene by using different catalytic systems based on dinitro‐substituted bis(salicylaldiminate)nickel(II) precursors such as bis[3,5‐dinitro‐N(2,6‐diisopropylphenyl)]nickel(II) and bis[3,5‐dinitro‐N(phenyl)]nickel(II) in combination with organoaluminum compounds was investigated. In particular, the catalytic performances were studied as a function of the main reaction parameters, such as temperature, pressure, Al/Ni molar ratio, and duration. Methylaluminoxane resulted in the best co‐catalyst. Activities up to 200 kg polyethylene/(mol Ni × h) to give a linear high‐molecular‐weight polymer were achieved. The influence of the bulkiness of the substituents on the N‐aryl group of the aldimine ligand was also checked; it resulted in a determinant for catalytic activity rather than for polymer characteristics. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2534–2542, 2004  相似文献   

13.
A series of 8‐(arylimino)‐5,6,7‐trihydroquinolines ligand pendant fluorenyl group at N‐aryl ring, and their nickel complexes ( Ni1 ? Ni5 ) have been prepared and characterized. Once activated with Et2AlCl, the complexes Ni1 , Ni2 , and Ni3 bearing ligands from para‐fluorenylaniline produced unimodal polyethylenes; on the contrary complexes Ni4 and Ni5 gave bimodal polyethylenes due to steric influence of ligands from ortho‐fluorenyl anilines. With a increment of Et2Zn/ Ni4 ratio from 0 to 400, the distinct bimodel polyethylenes were obtained with molecular weights shifted from 14.3 to 57.6 kg·mol?1; apart shiftment to higher molecular weights, the portion of low molecular weight decreased along with higher portion of high molecular weight. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 1910–1919  相似文献   

14.
Two novel nickel (II) complexes, CH{C(CF3)NAr}2NiBr ( 1 , Ar = 2,6‐iPr2C6H3 and 2 , 2,6‐Me2C6H3), were synthesized by the reaction of the lithium salt of fluorinated β‐diketiminate backbone ligands with (1,2‐dimethoxyethane) nickel (II) bromide [(DME)NiBr2]. The solid‐state structure of nickel (II) complex 2 as a dimer reveals four‐coordination and a tetrahedral geometry with bromide bridged by single crystal X‐ray measurement. Both complexes catalyze simultaneous polymerization and oligomerization of ethylene when activated by methylaluminoxane (MAO). It was found that the reaction temperature has a pronounced effect on the activity of ethylene polymerization and the molecular weight of obtained polyethylene. In addition, the nickel catalytic systems predominantly produce linear polyethylene with unsaturated end groups. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
A catalytic system of new titanium complexes with methylaluminoxane (MAO) was found to effectively polymerize ethylene for high molecular weight polyethylene as well as highly active copolymerization of ethylene and norbornene. The bis (imino‐indolide)titanium dichlorides (L2TiCl2, 1 – 5 ), were prepared by the reaction of N‐((3‐chloro‐1H‐indol‐2‐yl)methylene)benzenamines with TiCl4, and characterized by elemental analysis, 1H and 13C NMR spectroscopy. The solid‐state structures of 1 and 4 were determined by X‐ray diffraction analysis to reveal the six‐coordinated distorted octahedral geometry around the titanium atom with a pair of chlorides and ligands in cis‐forms. Upon activation by MAO, the complexes showed high activity for homopolymerization of ethylene and copolymerization of ethylene and norbornene. A positive “comonomer effect” was observed for copolymerization of ethylene and norbornene. Both experimental observations and paired interaction orbital (PIO) calculations indicated that the titanium complexes with electron‐withdrawing groups in ligands performed higher catalytic activities than those possessing electron‐donating groups. Relying on different complexes and reaction conditions, the resultant polyethylenes had the molecular weights Mw in the range of 200–2800 kg/mol. The influences on both catalytic activity and polyethylene molecular weights have been carefully checked with the nature of complexes and reaction conditions. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3415–3430, 2007  相似文献   

16.
Nickel(II) and palladium(II) complexes of monodentate aminophosphine ligands were prepared and characterized. In ethylene oligomerization and subsequent Friedel–Crafts alkylation of toluene, the Ni(II) complexes Ni‐1 and Ni‐2 were activated with aluminium co‐catalysts and generated tandem catalysts with high activities (up to 1.1 × 106 g (mol Ni)?1 h?1) which are comparable with those of previously reported bidentate Ni(II) catalysts. The Pd(II) precatalyst Pd‐1 showed high activities (up to 2.0 × 105 g (mol Pd)?1 h?1) in the polymerization of norbornene.  相似文献   

17.
The polymerization of norbornene has been investigated in the presence of different bis(salicylaldiminate)nickel(II) precursors activated by methylaluminoxane. These systems are highly active in affording nonstereoregular vinyl‐type polynorbornenes (PNBs) with high molecular weights. The productivity of the catalytic systems is strongly enhanced (up to 35,000 kg of PNB/mol of Ni × h) when electron‐withdrawing nitro groups are introduced on the phenol moiety. On the contrary, the presence of bulky alkyl groups on the N‐aryl moiety of the ligand does not substantially affect the activity or characteristics of the resulting PNBs. The catalytic performances are also markedly influenced by the reaction parameters, such as the nature of the solvent, the reaction time, and the monomer/Ni and Al/Ni molar ratios. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1514–1521, 2006  相似文献   

18.
Cycloocta[b ]pyridin‐10‐one was prepared to form the corresponding imino derivatives, which then reacted with (DME)NiBr2 to form 10‐aryliminocycloocta[b ]pyridylnickel bromides ( Ni1 – Ni5 ). The new compounds were characterized by means of FT‐IR spectroscopy as well as elemental analysis and the organic ligands were also analyzed by the NMR measurements. Furthermore, the molecular structure of a representative complex Ni3 was determined by the single crystal X‐ray diffraction, indicating the distorted tetrahedral geometry around the nickel atom. Upon the activation with either methylaluminoxane (MAO) or diethylaluminium chloride (Et2AlCl), the title nickel complexes exhibited high activity in ethylene polymerization and produced polyethylene of low molecular weight (1.43–6.78 kg mol?1) and low dispersity (1.7–2.4), which suggests a single‐site catalytic system. More importantly, the microstructure of the resultant polyethylene (especially degree of branching) and certain physical properties, such as T m values, can easily be modulated by selecting the proper substituents within the ligands and adjusting the polymerization conditions. This finding demonstrates that it is plausible to use a single catalyst for synthesizing different types of polyethylene on demand.10‐Aryliminocycloocta[b ]pyridylnickel bromides ( Ni1–Ni5 ), upon activation with either MAO or Et2AlCl, exhibited high activity towards ethylene polymerization and produced polyethylenes with low molecular weight (1.43–6.78 kg mol?1) and low dispersity (1.7–2.4). © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 2601–2610  相似文献   

19.
A series of binuclear nickel complexes bearing N-(5,6,7-trihydroquinolin-8-ylidene)amino CH(C6H4-4-R2){4-C6H2-2,6-R12N-(C5H3NC4H6)}2 [R1 = Me, R2 = OH L1 , R1 = Et, R2 = OH L2 , R1 = Me, R2 = H L3 , R1 = Me, R2 = OCH3 L4 ] has been synthesized and characterized. In the presence of either methylaluminoxane (MAO) or Et2AlCl, all nickel complexes exhibited high activities up to 3.33 × 106 g (PE)·mol−1(Ni)·hr−1 toward ethylene polymerization, producing high branched polyethylenes (PEs). The aluminum cocatalysts have significantly affected the properties of resultant PE; with MAO as the cocatalyst, the resultant PE shows higher molecular weight and possesses only one Tm value, meanwhile Et2AlCl as the cocatalyst, the obtained PE indicates lower molecular weight and two melting points. The microstructures of those PEs determined by their 13C NMR spectra illustrate the similar densities but different types of branches, in which the PE obtained with Et2AlCl shows high methyl branch selectivity (>80%), and the PE produced by MAO has 50% methyl and another half of longer branches. The branched PEs are consistent to the chain migration happened in the ethylene polymerization.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号