首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In order to obtain pristine polyimides with high barrier properties, pyromellitic dianhydride (PMDA) and 9H-fluorene-2,7-diamine (FDA) containing rigid planar fluorene moieties were used to prepare polyimide (FPI) via a conventional two-step polymerization process in this paper. The synthesized polyimide shows good barrier properties, with oxygen transmission rate (OTR) and water vapor transmission rate (WVTR) low to 1.01 cm3 m?2 day?1 and 2.35 g m?2 day?1, respectively. The effect of rigid planar structure in main chain on the barrier properties of polyimide was studied by means of wide angle X-ray diffractograms (WAXD), molecular dynamics simulations and positron annihilation lifetime spectroscopy (PALS), which was rarely reported before. The results reveal that the good barrier properties of FPI are mainly due to the high crystallinity, high chain rigidity and low free volume, which are resulted from the rigid planar structure. Additionally, the polyimide exhibits excellent thermal and dimensional stability with 5 wt% loss temperature of 519°C, glass transition temperature of 370°C and coefficient of thermal expansion (CTE) of 5.72 ppm/K. The good gas barrier and thermostability endow the polyimide with promising potential in flexible electronics encapsulation applications.  相似文献   

2.
A high-performance polyimide was prepared by the dipolymerization of 4,4'-diaminobenzanilide (DABA) and pyromellitic dianhydride (PMDA). Due to the introduction of rigid planar moieties and amide groups, the polyimide shows outstanding properties, such as high glass transition temperatures (435 °C), excellent thermal stability (Td5%, 542 °C, coefficient of thermal expansion, −3.2 ppm K−1), and superior mechanical properties. Most importantly, the polyimide exhibits excellent barrier properties, with oxygen transmission rate (OTR) and water vapor transmission rate (WVTR) low to 7.9 cm3 (m2 day)−1 and 5.1 g (m2 day)−1, respectively. Wide angle X-ray diffractograms (WAXD), positron annihilation lifetime spectroscopy (PALS) and molecular dynamics simulations reveal that the excellent barrier properties are mainly attributed to the high crystallinity, high extent of in-plane crystalline orientation, and low free volume, which are resulted from the rigid planar structure and strong interchain hydrogen bonding. The high-barrier and thermally stable polyimide has an attractive potential application prospect in the fields of micro-electronics encapsulation and high grade packaging industry.  相似文献   

3.
An intrinsic high-barrier polyimide (2,7-CPAPPI) containing rigid planar carbazole moiety and amide group in main chain was prepared. The 2,7-CPAPPI shows very attractive barrier performances, possessing water vapor transmission rate (WVTR) and oxygen transmission rate (OTR) low to 0.04 g m−2 day−1 and 0.11 cm3 m−2 day−1, respectively. Meanwhile, 2,7-CPAPPI also displays exceptional thermal stability with a glass transition temperature (Tg) of 552°C and coefficient of thermal expansion (CTE) of 15.48 ppm/K. The barrier performances of 2,7-CPAPPI are compared with those of a structural analog (2,7-CPPI, containing only carbazole moiety in the main chain) and a typical polyimide (Kapton). The structure–barrier performances relationship was investigated by molecular simulations, wide angle X-ray diffraction (WAXD), and positron annihilation lifetime spectroscopy (PALS). The results show that 2,7-CPAPPI has more number of intermolecular hydrogen bonds among the three PIs, which leads to close chain packing and thereby high crystallinity, low free volume, and poor chains mobility. That is, the high crystallinity and low free volume of 2,7-CPAPPI decrease the diffusion and solubility of gases. Meanwhile, the poor chains mobility further reduces the gases diffusion. The decreased diffusion and solubility of gases consequently promote the improvement of barrier properties for 2,7-CPAPPI.  相似文献   

4.
Mesoporous (MSU) Ce0.5Zr0.5O2 mixed oxide with a high specific surface area has been synthesized under weak acidic condition in the presence of an anionic surfactant, sodium dodecylbenzenesulfonate. The effect of the pH value on the formation of mesostructure and the thermal stability of the material has been evaluated. The products were characterized by transmission electron microscopy, powder X-ray diffraction and nitrogen adsorption-desorption measurements. The results showed that the as-prepared Ce0.5Zr0.5O2 mixed oxide possessed a specific surface area of 163.3 m^2·g^-1, which had a cubic fluorite-type structure and possessed specific surface areas of 148.4 and 62.4 m^2·g^-1 after calcination at 500 and 800 ℃ for 2 h, respectively. The material showed excellent thermal stability.  相似文献   

5.
A novel sulfonated diamine monomer, 2,2′‐bis(p‐aminophenoxy)‐1,1′‐binaphthyl‐6,6′‐disulfonic acid (BNDADS), was synthesized. A series of sulfonated polyimide copolymers containing 30–80 mol % BNDADS as a hydrophilic component were prepared. The copolymers showed excellent solubility and good film‐forming capability. Atomic force microscopy phase images clearly showed hydrophilic/hydrophobic microphase separation. The relationship between the proton conductivity and degree of sulfonation was examined. The sulfonated polyimide copolymer with 60 mol % BNDADS showed higher proton conductivity (0.0945–0.161 S/cm) at 20–80 °C in liquid water. The membranes exhibited methanol permeability from 9 × 10?8 to 5 × 10?7 cm2/s at 20 °C, which was much lower than that of Nafion (2 × 10?6cm2/s). The copolymers were thermally stable up to 300 °C. The sulfonated polyimide copolymers with 30–60 mol % BNDADS showed reasonable mechanical strength; for example, the maximum tensile strength at break of the sulfonated polyimide copolymer with 40 mol % BNDADS was 80.6 MPa under high moisture conditions. The optimum concentration of BNDADS was found to be 60 mol % from the viewpoint of proton conductivity, methanol permeability, and membrane stability. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 222–231, 2007  相似文献   

6.
A series of novel high molecular weight fluorinated co‐polyimides (Co‐PIs) containing styryl side chain based on 1,3‐bis(2‐trifluoromethyl‐4‐aminophenoxy)‐5‐(2,3,4,5‐tetrafluorophenoxy)benzene (6FTFPB) were successfully synthesized. The weight‐average molecular weights (Mws) and polydispersities of the co‐polyimides were in the range 8.93–10.81 × 104 and 1.33–1.82, respectively. The co‐polyimide film showed excellent solubility in organic solvents, high tensile properties (tensile strength exceeded 91 MPa), excellent optical transparency (cutoff wavelength at 332–339 nm and light transparencies above 89% at a wavelength of 550 nm), and high thermal stability (5% thermal weight‐loss temperature up to 510 °C). The casting and spinning films could be cross‐linked by thermal curing. The cured films show better combination property (including excellent resistance to solvents) than that of co‐polyimides. For instance, the glass transition temperature of Co‐PI‐1 (the molar weight ratio of 6FTFPB was 30%) increased from 217 to 271 °C, the tensile strength enhanced from 94 to 96 MPa, the 5% thermal weight‐loss temperature improved from 514 to 525 °C. Moreover, after cured, Co‐PI‐1 film also has a coefficient of thermal expansion (CTE) value of 60.3 ppm °C?1, low root mean square surface roughness (Rq) at 4.130 nm and low dielectric constant of 2.60. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 349–359  相似文献   

7.
A series of novel polyimide electrolytes having long pendant sulfo‐ or phosphoalkoxy groups were synthesized for fuel‐cell applications. Sulfodecyloxy‐, phosphodecyloxy‐, and sulfophenoxydodecyloxy‐substituted benzidine monomers were synthesized from dihydroxybenzidine. These monomers were copolymerized with naphthalene tetracarboxylic dianhydride and fluorenylidene dianiline to give the corresponding polyimides. A flexible, ductile, and self‐standing membrane was obtained via casting from the polyimide solution. Because the acid groups were on long pendant side chains and away from the main chains, the polyimide membrane showed improved oxidative and hydrolytic stability in comparison with the polyimides with sulfonic acid groups on the main chains or on the short side chains. High thermal stability (no glass‐transition temperature and a decomposition temperature > 200 °C) was also obtained. The polyimide membrane displayed high proton conductivity of 10?1 S cm?1 at 120 °C. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3995–4005, 2006  相似文献   

8.
4′‐Nonafluorobutylstyrene (3) was synthesized and polymerized by conventional and controlled radical polymerization (iodine transfer polymerization (ITP)). Such an aromatic fluoromonomer was prepared from Ullmann coupling between 1‐iodoperfluorobutane and 4‐bromoacetophenone followed by a reduction and a dehydration in 50% overall yield. Two radical polymerizations of (3) were initiated by AIBN either under conventional or controlled conditions, with 1‐iodoperfluorohexane in 84% monomer conversion and in 50% yield. ITP of (3) featured a fast monomer conversion and a linear evolution of the ln([M]0/[M]) versus time. The kinetics of radical homopolymerization of (3) enabled one to assess its square of the propagation rate to the termination rate (kp2/kt) in ITP conditions (36.2·10?2 l·mol?2·sec?2 at 80 °C) from the Tobolsky's kinetic law. Polydispersity index (?) of the fluoropolymer achieved by conventional polymerization was 1.30 while it worthed 1.15 when synthesized by ITP. Thermal stabilities of these oligomers were satisfactory (10% weight loss under air occurred from 305 °C) whereas the melting point was 47 °C. Contact angles and surface energies assessed from spin‐coated poly(3) films obtained by conventional (hysteresis = 18°, surface energy 18 mN.m?1) and ITP (hysteresis = 47°, surface energy 15 mN.m?1) evidenced ? values' influence onto surface properties of the synthesized polymers. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3202–3212  相似文献   

9.
A series of new polyimides (PIs) containing di‐tert‐butyl side groups were synthesized via a polycondensation of 1‐(4‐aminophenoxy)‐4‐(4‐amino‐2‐methylphenyl)‐2,6‐di‐tert‐butylbenzene ( 3 ) with various aromatic tetracarboxylic dianhydrides. The novel unsymmetric PIs exhibited a low dielectric constants (2.78–3.02), low moisture absorption (0.53–1.35%), excellent solubility, and high glass transition temperature (308–450 °C). The PI derived from the new diamine and the very rigid naphthalene‐1,4,5,8‐tetracarboxylic dianhydride (NTDA) was soluble in N‐methyl‐2‐pyrrolidone, chloroform, m‐cresol, and cyclohexanone. The unsymmetric di‐tert‐butyl pendent groups significantly enhance the rotational barrier of the polymer chains; thus these PIs had high Tgs. The 1H NMR spectrum of the diamine 3 revealed that the protons of 4‐aminophenoxy moiety are not chemical shift equivalent. This is because the steric hindrance of the bulky di‐tert‐butyl groups prevents the benzene ring of 4‐aminophenoxy moiety from rotating freely. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2443–2452, 2009  相似文献   

10.
A series of 2‐(arylimino)benzylidene‐9‐arylimino‐5,6,7,8‐tetrahydrocyclohepta[b] pyridyliron(II) chlorides was synthesized and characterized using FT‐IR and elemental analysis, and the molecular structures of complexes Fe3 and Fe4 have been confirmed by the single‐crystal X‐ray diffraction as a pseudo‐square‐pyramidal or distorted trigonal‐bipyramidal geometry around the iron core. On activation with methylaluminoxane (MAO) or modified methylaluminoxane (MMAO), all iron precatalysts exhibited high activities toward ethylene polymerization with a marvelous thermo‐stability and long lifetime. The Fe4 /MAO system showed highest activity of 1.56 × 107 gPE·mol?1(Fe)·h?1 at 70 °C, which is one of the highest activities toward ethylene polymerization by iron precatalysts. Even up to 80 °C, Fe3 /MAO system still persist high activity as 6.87 × 106 g(PE)·mol?1(Fe)·h?1, demonstrating remarkable thermal stability for industrial polymerizations (80–100 °C). This was mainly attributing to the phenyl modification of the framework of the iron precatalysts. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 830–842  相似文献   

11.
12.
A diamine‐based benzoxazine monomer (Bz) and a liquid crystalline epoxy monomer (LCE) are synthesized, respectively. Subsequently, a benzoxazine‐epoxy interpenetrating polymer network (PBEI) containing liquid crystalline structures is obtained by sequential curing of the LCE and the Bz in the presence of imidazole. The results show that the preferential curing of LCE plays a key role in the formation mechanism of liquid crystalline phase. Due to the introduction of liquid crystalline structures, the thermal conductivity of PBEI increases with increasing content of LCE. When the content of LCE is 80 wt %, the thermal conductivity reaches 0.32 W m?1 K?1. Additionally, the heat‐resistance of PBEI is superior to liquid crystalline epoxy resin. Among them, PBEI55 containing equal weight of Bz and LCE has better comprehensive performance. Its thermal conductivity, glass transition temperature, and the 5 % weight loss temperature are 0.28 W m?1 K?1, 160 °C, and 339 °C, respectively. By introducing boron nitride (BN) fillers into PBEI55, a composite of PBEI/BN with the highest thermal conductivity of 3.00 W m?1 K?1 is obtained. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55 , 1813–1821  相似文献   

13.
In this study, various organic compounds, with different activation modes, have been tested as catalysts for the ring‐opening polymerization (ROP) of cyclic butylene terephthalate oligomers (CBT) in bulk at 210 °C, using tert‐butylbenzyl alcohol (tBnOH) as initiator. Among them, 1,3,5‐triazabicyclo[4.4.0]dec‐5‐ene (TBD) appeared to be the most efficient, achieving high monomer conversions in short reaction times (within minutes). Analysis by size‐exclusion chromatography (SEC) of the poly(butylene terephthalate) (PBT) synthesized using this catalyst also showed that the polymerization follows the expected theoretical M n trend for molecular weights up to 50 kg·mol?1. Chain‐end fidelity relatively to the alcohol initiator has been confirmed by MALDI‐TOF mass spectroscopy, which showed that all polymer chains possess the tert‐butylbenzyl moiety as chain‐end. Finally, to demonstrate the potential of this system for the synthesis of PBT‐based block copolymers, a monomethyl ether poly(ethylene glycol) (PEG) of 5000 g·mol?1 has been employed as initiator for the ROP of CBT. A PEO‐b‐PBT block copolymer of 15,000 g·mol?1 could thus been obtained, as confirmed by the shift of the SEC traces towards higher molecular weights and the same diffusion coefficient determined for 1H NMR signals of the PEO block and the PBT block. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 1611–1619  相似文献   

14.
A series of 2‐(1‐(2,4‐dibenzhydrylnaphthylimino)ethyl)‐6‐(1‐(arylimino)ethyl)pyridyliron(II) complexes ( Fe1 ? Fe5 ) was synthesized and characterized. The molecular structure of the representative Fe2 was determined by single‐crystal X‐ray diffraction, revealing a distorted pseudo‐square‐pyramidal geometry around the iron center. On activation with either methylaluminoxane (MAO) or modified methylaluminoxane (MMAO), all these iron complex precatalysts performed with high activities (up to 1.58 × 107 g (PE) mol?1 (Fe) h?1) toward ethylene polymerization, producing highly linear polyethylenes with high molecular weight and bimodal distribution, which was in accordance with high temperature 13C NMR, high T m values (T m ~130 °C) and the GPC curves of the obtained polyethylenes. Meanwhile, DFT calculation results also showed the good correlation between net charges on iron and experimental activities. Compared with previous bis(imino)pyridyliron analogues, the current iron complexes containing the benzhydrylnaphthyl groups exhibited relatively higher activities and better thermal‐stability at elevated temperatures, especially at 80 °C as the industrial operating temperature, and still showed high activities toward ethylene polymerization up to 8.57 × 106 g (PE) mol?1 (Fe) h?1 in the presence of co‐catalyst MMAO. In addition, these iron complex precatalysts all exhibited long lifetimes. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 988–996  相似文献   

15.
A new negative‐working and alkaline‐developable photosensitive polyimide precursor based on poly(amic acid) (PAA), 4,4′‐methylenebis[2,6‐bis(hydroxymethyl)]phenol (MBHP) as a crosslinker, and a photoacid generator (5‐propylsulfonyloxyimino‐5H‐thiophen‐2‐ylidene)‐2‐(methylphenyl)acetonitrile (PTMA) has been developed. PAA was prepared by ring‐opening polymerization of pyromellitic dianhydride with 4,4′‐oxydianiline. The photosensitive polyimide precursor containing PAA (65 wt %), MBHP (25 wt %), and PTMA (10 wt %) showed a clear negative image featuring 10 μm line and space patterns when it was exposed to 436 nm light at 100 mJ·cm?2, post‐exposure baked at 130 °C for 3 min, followed by developing with a 2.38 wt % aqueous tetramethylammonium hydroxide solution at 25 °C. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 593–599, 2005  相似文献   

16.
A series of branched/crosslinked sulfonated polyimide (B/C‐SPI) membranes were prepared and evaluated as proton‐conducting ionomers based on the new concept of in situ crosslinking from sulfonated polyimide (SPI) oligomers and triamine monomers. Chemical branching and crosslinking in SPI oligomers with 1,3,5‐tris(4‐aminophenoxy)benzene as a crosslinker gave the polymer membranes very good water stability and mechanical properties under an accelerated aging treatment in water at 130 °C, despite their high ion‐exchange capacity (2.2–2.6 mequiv g?1). The resulting polymer electrolytes displayed high proton conductivities of 0.2–0.3 S cm?1 at 120 °C in water and reasonably high conductivities of 0.02–0.03 S cm?1 at 50% relative humidity. In a single H2/O2 fuel‐cell system at 90 °C, they exhibited high fuel‐cell performances comparable to those of Nafion 112. The B/C‐SPI membranes also displayed good performances in a direct methanol fuel cell with methanol concentrations as high as 50 wt % that were superior to those of Nafion 112. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3751–3762, 2006  相似文献   

17.
Polyimide containing an indan unit and alkyl moiety with a high molecular weight was prepared from 5,7‐diamino‐1,1,4,6‐tetramethylindan and 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride. This polyimide was amorphous and soluble in common organic solvents, such as tetrahydrofuran, chloroform, and cyclopentanone. Thermogravimetry of the polyimide showed good thermal stability, indicating that a 10% weight loss of the polyimide was observed at 500 °C in nitrogen. The glass‐transition temperature of the polyimide was not observed by DSC measurement between room temperature and 400 °C at a heating rate of 10 °C/min (Apparatus: DSC3100 MAC Science Co., Ltd.). Transparency of the polyimide at 365 nm was 80%. The polyimide acted as a photosensitive resist of negative type by UV radiation. The resist had a sensitivity of 31 mJ/cm2 and a contrast of 2.3 when it was developed with cyclopentanone at room temperature. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 423–428, 2002  相似文献   

18.
The bio‐based polyester, poly(ethylene 2,5‐furandicarboxylate) (PEF), was modified by 2,2,4,4‐tetramethyl‐1,3‐cyclobutanediol (CBDO) via copolymerization and a series of copolyesters poly(ethylene‐co‐2,2,4,4‐tetramethyl‐1,3‐cyclobutanediol 2,5‐furandicarboxylate)s (PETFs) were prepared. After their chemical structures and sequence distribution were confirmed by nuclear magnetic resonance (1H‐NMR and 13C‐NMR), their thermal, mechanical, and gas barrier properties were investigated in detail. Results showed that when the content of CBDO unit in the copolyesters was increased up to 10 mol%, the completely amorphous copolyesters with good transparency could be obtained. In addition, with the increasing content of CBDO units in the copolyesters, the glass transition temperature was increased from 88.9 °C for PET to 94.3 °C for PETF‐23 and the tensile modulus was increased from 3000 MPa for PEF to 3500 MPa for PETF‐23. The barrier properties study demonstrated that although the introduction of CBDO units would increase the O2 and CO2 permeability of PEF slightly, PECF‐10 still showed better or similar barrier properties compared with those of PEN and PEI. In one word, the modified PEF copolyesters exhibited better mechanical properties, higher glass transition temperature, good barrier properties, and better clarity. They have great potential to be the bio‐based alternative to the popular petroleum‐based poly(ethylene terephthalate) (PET) when used as the beverage packaging materials. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3298–3307  相似文献   

19.
In this article, we address in situ synthesis of polyethylene terephthalate (PET) nanocomposites using the bis (2‐hydroxyethyl) phthalate monomer and inorganic layered materials (sulfanilic acid salt‐modified magnesium aluminum‐layered double hydroxides [MgAl LDH‐SAS] and Dimethyloctadecyl [3‐(trimethoxysilyl) propyl] ammonium chloride [DTSACl] and tetraethyl orthosilicate [TEOS]‐ modified clay [CL120‐DT]). The dispersion morphology of the synthesized nanocomposites was evaluated using XRD and TEM, from these results, it was confirmed that 0.5 wt% loaded PET/MgAl LDH‐SAS and PET/CL120‐DT nanocomposites have flocculated and intercalated morphologies, respectively. Thermomechanical analyses were performed by thermogravimetric analysis, dynamic mechanical analysis, and differential scanning calorimetry, respectively. Moreover, the water vapor transmission rate (WVTR) values of a pure PET, PET/CL120‐DT 0.5 wt%, and PET/MgAl LDH‐SAS 0.5 wt% nanocomposites were found to be 49, 45, and 46 g·m?2·day?1, respectively. Furthermore, the gas barrier properties of PET composite films containing various amounts of inorganic nanoparticles were investigated using Gas permeability analysis (GPA).  相似文献   

20.
Study on proton exchange membrane (PEM) with the aim toward excellent battery performance of PEM for fuel cells has attracted increasing attention. In this work, nanocellulose (CNC) aminated by KH792 noted as NN was prepared. CNC or NN/sulfophenylated poly(ether ether ketone ketone) (sPEEKK) nanocomposite membrane (SN) or (SNN) were produced by solution mixing. SNN was further coated with tetraethyl orthosilicate (TEOS) to obtain SNNT. The properties of sPEEKK, SN, SNN, and SNNT membranes were thoroughly investigated. The proton conductivity of SN4 was 0.22 S·cm?1 at 90 °C, while a proton conductivity of 0.30 S·cm?1 was obtained for SNN4, and an even higher value of 0.36 S·cm?1 at 90 °C was obtained for the TEOS‐coated SNN4 (SNN4T). Meanwhile, SNN4T showed high thermal stability, and its Td5 was as high as 318.2 °C. Furthermore, the composite membrane coated with TEOS also presented excellent oxidative stability. The mass of SNN2T after treated in Fenton agent for 1 h at 80 °C was still retained 96.2%, and it was not fully dissolved until 11 h. It was illustrated that aminated CNC/sPEEKK nanocomposite membranes coated with TEOS is a kind of promising materials as PEMs for fuel cells. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2190–2200  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号