首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Formylated polystyrene (PS‐CHO) was synthesized by chemical modification of polystyrene (PS) for the fabrication of honeycomb patterned (HCP) porous PS films with aldehyde group functionalized pores via breath figure method under humid conditions. The incorporation of hydrophilic aldehyde group affected the hydrophobicity of PS solution and assisted the self‐assembly of PS‐CHO toward pore. The presence of aldehyde groups in the films were proved by the post treatment with Tollens's reagent, which results in silver decoration at pores. The morphology of the films before and after silver decoration was studied by scanning electron microscopy analysis. The pore selectively self‐assembled aldehyde groups in the patterned porous films can have many applications as a reactive substrate in biomaterials and chemical moieties adhesion. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1181–1192  相似文献   

2.
The photoswitching behavior of polyethylene glycol‐based hydrogels was determined by monitoring the changes in their swellability and absorption spectra upon exposure to alternating wavelengths of irradiation. Highly hydrophilic PEG‐based hydrogels were prepared by the irradiation of a cinnamylidene acetate‐terminated PEG solution (PEG‐CA). The degree of swelling of the PEG‐CA hydrogels was predictably modulated by alternating the wavelength of exposing irradiation. Exposing the PEG‐CA gels to >300 nm irradiation resulted in the decrease of their swellability, while short exposure to 254 nm led to more hydrophilic gels. That is, the physical properties of the PEG‐CA gels can be controlled by the selection of wavelength of irradiation. Interestingly, it was found that 254 nm irradiation could not only lead to the photoscission of the PEG‐CA gels, but also initiate a crosslinking reaction between PEG‐CA monomers. On the contrary, only photocrosslinking via a cyclobutane ring formation was observed under >300‐nm irradiation. Finally, the factors that could affect an efficient photoswitching behavior of the PEG‐CA gels were investigated. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1466–1476, 2000  相似文献   

3.
Water soluble monomer like sodium p‐styrene sulfonate (SSS) is copolymerized with hydrophobic and reactive monomer glycidyl methacrylate (GMA). The polymerization proceeds as dispersion and forms gels. The gel forming nature prevails even with other hydrophobic and hydrophilic monomers to form ternary polymeric systems. The swelling is dependent on polymer composition as well as the treatment history of polymers. SSS also induces ring opening of GMA to form 1,2‐diols as confirmed independently by various model reactions. The ability of hydrogels to absorb various dyes indicates that owing to the anionic nature, hydrogels absorb cationic dyes nearly quantitatively. Because of their strong affinity to cationic species these hydrogel forming polymers are potentially useful in water purification applications as well as purification of proteins. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 626–634  相似文献   

4.
The chemical composition of glycosaminoglycan (GAG) hydrogels was found to have a profound effect on the physical properties of gels. Hyaluronan (HA) and chondroitin sulfate (CS) were each modified with adipic dihydrazide (ADH) with carbodiimide chemistry. The resulting polymer was crosslinked with various concentrations of poly(ethylene glycol) dialdehyde (PEG‐diald) to produce a series of hydrogels. The physical properties of these GAG hydrogels varied in a concentration‐dependent fashion. Maximal crosslinking was observed at a theoretical crosslinking of 50% for the HA‐ADH‐PEG‐diald hydrogels and 75% for the CS‐ADH‐PEG‐diald hydrogels. Adding PEG‐diald beyond the optimum for crosslinking prolonged the in vitro enzymatic degradation time of the hydrogels. The swelling of the crosslinked GAG hydrogels was correlated with the amount of PEG‐diald used rather than with the crosslinking density. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4344–4356, 2004  相似文献   

5.
We present the synthesis of reactive polymer brushes prepared by surface reversible addition–fragmentation chain transfer polymerization of pentafluorophenyl acrylate. The reactive ester moieties can be used to functionalize the polymer brush film with virtually any functionality by simple post‐polymerization modification with amines. Dithiobenzoic acid benzyl‐(4‐ethyltrimethoxylsilyl) ester was used as the surface chain transfer agent (S‐CTA) and the anchoring group onto the silicon substrates. Reactive polymer brushes with adjustable molecular weight, high grafting density, and conformal coverage through the grafting‐from approach were obtained. Subsequently, the reactive polymer brushes were converted with amino‐spiropyrans resulting in reversible light‐responsive polymer brush films. The wetting behavior could be altered by irradiation with ultraviolet (UV) or visible light. Furthermore, a patterned surface of polymer brushes was obtained using a lithography technique. UV irradiation of the S‐CTA‐modified substrates leads to a selective degradation of S‐CTA in the exposed areas and gives patterned activated polymer brushes after a subsequent RAFT polymerization step. Conversion of the patterned polymer brushes with 5‐((2‐aminoethyl)amino)naphthalene‐1‐sulfonic acid resulted in patterned fluorescent polymer brush films. The utilization of reactive polymer brushes offers an easy approach in the fabrication of highly functional brushes, even for functionalities whose introduction is limited by other strategies. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

6.
A series of amine functionalized polymers based on polyether backbones was prepared by the chemical modification of poly(epichlorohydrin) and poly(2-chloroethylvinyl ether). Nucleophilic substitution of pendant chloroalkyl groups offers a versatile route to prepare hydrophilic, cationic polymers. Through the choice of appropriate experimental conditions, including solvent, temperature, and amine reagent, a high degree of substitution at the chloromethyl groups can be achieved. Depending on the nature of the amine used, both water-soluble and amphiphilic cationic polymers were obtained. Crosslinked hydrogels were prepared by either subsequent crosslinking of the amine functional polyethers or by reaction of chloroalkyl polyethers with multifunctional amines. These amine functional polyethers exhibited promising bile acid sequestration properties during in vivo experiments using hamsters as animal models, providing a novel approach for treating hypercholesterolemia. Some of these polymers show efficacy superior to commercially available bile acid sequestrants. The results suggest that these novel polyammonium gels may be useful as cholesterol lowering agents.  相似文献   

7.
Fabrication and functionalization of hydrogels from well‐defined dendron‐polymer‐dendron conjugates is accomplished using sequential radical thiol‐ene “click” reactions. The dendron‐polymer conjugates were synthesized using an azide‐alkyne “click” reaction of alkene‐containing polyester dendrons bearing an alkyne group at their focal point with linear poly(ethylene glycol)‐bisazides. Thiol‐ene “click” reaction was used for crosslinking these alkene functionalized dendron‐polymer conjugates using a tetrathiol‐based crosslinker to provide clear and transparent hydrogels. Hydrogels with residual alkene groups at crosslinking sites were obtained by tuning the alkene‐thiol stoichiometry. The residual alkene groups allow efficient postfunctionalization of these hydrogel matrices with thiol‐containing molecules via a subsequent radical thiol‐ene reaction. The photochemical nature of radical thiol‐ene reaction was exploited to fabricate micropatterned hydrogels. Tunability of functionalization of these hydrogels, by varying dendron generation and polymer chain length was demonstrated by conjugation of a thiol‐containing fluorescent dye. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 926–934  相似文献   

8.
The potential to improve mechanical, structural, and mechanochemical properties of charge‐functionalized poly(N,N‐dimethylaminoethyl methacrylate) (PDMAEMA)‐based hybrid cryogels is investigated. The simple and versatile synthesis of hybrid cryogels with high strength and toughness using cationic DMAEMA and ionic comonomer 2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid has been proposed via in situ free‐radical crosslinking (cryo)polymerization by which the properties of virgin polymer can be modulated to required applications by incorporation of inorganic filler kaolin (KLN). Two factors affecting swelling and elasticity of hybrid gels (referred as PDA/KLNm), KLN content and gel preparation temperature, are studied. The optimum KLN concentration for desired swelling and modulus of elasticity is determined as 0.80% (w/v). Effective crosslinking density of hybrid hydrogels increases with KLN addition and this dependence is expressed by a quadratic polynomial as a function of KLN concentration. The results show that obtained hybrid gels with multiresponsive properties could be regarded as “smart materials” in sensing and actuation applications. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1758–1778  相似文献   

9.
Hydrogels are hydrophilic, porous polymer networks that can absorb up to thousands of times their own weight in water. They have many potential applications, one of which is the encapsulation of freestanding black lipid membranes (BLMs) for novel separation technologies or biosensor applications. We investigated gels for in situ encapsulation of multiple BLMs formed across apertures in a hydrophobic ethylene tetrafluoroethylene (ETFE) support. The encapsulation gels consisted of networks of poly(ethylene glycol)‐dimethacrylate or poly(ethylene glycol)‐diacrylate polymerized using either a chemical initiator or a photoinitiator. The hydrogels were studied with regards to volumetric stability, porosity, and water permeability. All hydrogels had pore sizes around 7 nm with volumetric changes >2% upon crosslinking. Photoinitiated hydrogels had a lower hydraulic water permeability compared to chemically initiated hydrogels; however, for all hydrogels the permeability was several‐fold higher than the water permeability of conventional reverse osmosis (RO) membranes. Lifetimes of freestanding BLM arrays in gel precursor solutions were short compared to arrays formed in buffer. However, polymerizing (crosslinking) the gel stabilized the membranes and resulted in BLM arrays that remained intact for days. This is a substantial improvement over lifetimes for freestanding BLM arrays. Optical images of the membranes and single channel activity of incorporated gramicidin ion channels showed that the lipid membranes retained their integrity and functionality after encapsulation with hydrogel. Our results show that hydrogel encapsulation is a potential means to provide stability for biomimetic devices based on functional proteins reconstituted in biomimetic membrane arrays. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
HRM (hydrophilic reactive microgels) hydrogels based on acrylamide and 2-acrylamido-2-methylpropane sulfonic acid were prepared using HRM as a new crosslinking agent. HRM containing double bonds (C=C) were obtained by chemically modifying hydrophilic microgels (HM) of acrylamide with 2-acrylamido-2-methylpropane sulfonic acid. The resulting HRM hydrogels had high compression strength, elasticity, and elongation under high water content. The excellent mechanical performance is a main result of the unique microstructure of the hydrogels that are crosslinked by HRM instead of the conventional crosslinking agents such as N,N′–methylenebisacrylamide.  相似文献   

11.
This work aims at developing an approach to Ru(II)(Tpy)2‐functionalized hydrogels and exploring the coupling of the hydrogels with the Belousov‐Zhabotinsky (BZ) reaction. Based on free radical polymerization, two synthetic routes are developed. The first one is the direct gelation by copolymerization of acrylamide as hydrophilic component and Ru(II)(Tpy)2 as the functional group. The second one is carried out through a combined approach. A terpyridine‐containing hydrogel is first prepared and then post‐functionalized by coordination between Ru(III)(Tpy)Cl3 and terpyridine groups in the hydrogel network. Utilizing the synthetic hydrogels, the reversible redox responsiveness, the coupling with the BZ reaction, the occurrence and the self‐oscillating properties of the BZ reaction in the hydrogel networks are studied. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2214–2222  相似文献   

12.
A P Martinez  W W Lee  L Goodman 《Tetrahedron》1964,20(12):2763-2771
Fluorine-containing nitrogen mustards attached to hydrocinnamic acid, phenylpyruvic acid and -phenylalanine as carrier groups have been synthesized. The N-(2-chloroethyl)-N-(2′-fluoroethyl)amines are obtained by alkylation of the sodium salts of N-(benzyloxycarbonyl)amines with 2-fluoroethyl p-toluenesulfonate or 2-bromofluorethane, removal of the benzyloxycarbonyl group, followed by hydroxyethylation and chlorination. The bis(2-fluoroethyl)amines are obtained by heating the bis(2-p-toluenesulfonyloxyethyl)amines with potassium fluoride in a suitable solvent. By these reactions, methyl m-aminohydrocinnamate was converted to the chlorofluoro mustard XIX and the bis-fluoro mustard XX. Starting with aniline, the above reactions, in conjunction with the Vilsmeier-Haack reaction, afforded the benzaldehyde mustards VII and VIII. These are converted to the corresponding azlactones. A two-step hydrolysis of the azlactones afforded the chlorofluoro mustard IXA and the bisfluoro mustard IXB of phenylpyruvic acid. Reduction of the azlactone with zinc and acid, followed by hydrolysis, afforded the corresponding -phenylalanine mustards XIIIA and XIIIB.  相似文献   

13.
Novel water‐soluble amphiphilic block copolymers with pendant carboxylic acid groups are synthesized and used for the preparation of ionically crosslinked hydrogels. d ,l ‐Lactide (DLLA) and l ?3‐(2‐benzyloxycarbonyl)ethyl‐1,4‐dioxane‐2,5‐dione (BED) are copolymerized at different ratios via organo‐catalyzed ring‐opening polymerization using a hydroxyl‐terminated poly(ethylene glycol) (PEG–OH) macroinitiator. Dynamic light‐scattering experiments show that, at low concentrations, aqueous solutions of these PEG‐P(BED‐DLLA) copolymers form micelles and aggregates. At higher concentrations, thermo‐sensitive gels are obtained, exhibiting a reversible gel‐to‐sol transition upon a temperature increase. Ionic interactions between the COOH groups and metal ions (Cu2+ or Ca2+) are shown to significantly shift the gel–sol transition to higher temperatures. Thus, the introduction of COOH groups significantly enhances the water solubility of the amphiphilic PEG–polyester copolymer and allows additional crosslinking interactions to form functionalized hydrogels with improved physical properties, making this new class of hydrogels interesting for various applications. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1222–1227  相似文献   

14.
Methacrylate‐based hydrogels, such as homo‐ and copolymers of 2‐hydroxyethyl methacrylate (HEMA), have demonstrated significant potential for use in biomedical applications. However, many of these hydrogels tend to resist cell attachment and growth at their surfaces, which can be detrimental for certain applications. In this article, glycidyl methacrylate (GMA) was copolymerized with HEMA to generate gels functionalized with epoxide groups. The epoxides were then functionalized by two sequential click reactions, namely, nucleophilic ring opening of epoxides with sodium azide and then coupling of small molecules and peptides via Huisgen's copper catalyzed 1,3‐dipolar cycloaddition of azides with alkynes. Using this strategy it was possible to control the degree of functionalization by controlling the feed ratio of monomers during polymerization. In vitro cell culture of human retinal pigment epithelial cell line (ARPE‐19) with the hydrogels showed improved cell adhesion, growth and proliferation for hydrogels that were functionalized with a peptide containing the RGD sequence. In addition, the cell attachment progressively decreased with increasing densities of the RGD containing peptide. In summary, a facile methodology has been presented that gives rise to hydrogels with controlled degrees of functionality, such that the cell response is directly related to the levels and nature of that functionality. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1781–1789  相似文献   

15.
Three series of semi‐interpenetrating polymer networks, based on crosslinked poly(N‐isopropyl acrylamide) (PNIPA) and 1 wt % nonionic or ionic (cationic and anionic) linear polyacrylamide (PAAm), were synthesized to improve the mechanical properties of PNIPA gels. The effect of the incorporation of linear polymers into responsive networks on the temperature‐induced transition, swelling behavior, and mechanical properties was studied. Polymer networks with four different crosslinking densities were prepared with various molar ratios (25:1 to 100:1) of the monomer (N‐isopropyl acrylamide) to the crosslinker (methylenebisacrylamide). The hydrogels were characterized by the determination of the equilibrium degree of swelling at 25 °C, the compression modulus, and the effective crosslinking density, as well as the ultimate hydrogel properties, such as the tensile strength and elongation at break. The introduction of cationic and anionic linear hydrophilic PAAm into PNIPA networks increased the rate of swelling, whereas the presence of nonionic PAAm diminished it. Transition temperatures were significantly affected by both the crosslinking density and the presence of linear PAAm in the hydrogel networks. Although anionic PAAm had the greatest influence on increasing the transition temperature, the presence of nonionic PAAm caused the highest dimensional change. Semi‐interpenetrating polymer networks reinforced with cationic and nonionic PAAm exhibited higher tensile strengths and elongations at break than PNIPA hydrogels, whereas the presence of anionic PAAm caused a reduction in the mechanical properties. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3987–3999, 2004  相似文献   

16.
In this study, a novel chitosan‐based polymeric network was synthesized by crosslinking with a naturally occurring crosslinking agent—genipin. The results showed that the crosslinking reactions were pH‐dependent. Under basic conditions, genipin underwent a ring‐opening polymerization prior to crosslinking with chitosan. The crosslink bridges consisted of polymerized genipin macromers or oligomers (7 ~ 88 monomer units). This ring‐opening polymerization of genipin was initiated by extracting proton from the hydroxyl groups at C‐1 of deoxyloganin aglycone, followed by opening the dihydropyran ring to conduct an aldol condensation. At neutral and acidic conditions, genipin reacted with primary amino groups on chitosan to form heterocyclic amines. The heterocyclic amines were further associated to form crosslinked networks with short chains of dimmer, trimer, and tetramer bridges. An accompanied reaction of nucleophilic substitution of the ester group on genipin by the primary amine group on chitosan would occur in the presence of an acid catalysis. The extent in which chitosan gels crosslinked with genipin was significantly dependent on the crosslinking pH values: 39.9 ± 3.8% at pH 5.0, 96.0 ± 1.9% at pH 7.4, 45.4 ± 1.8% at pH 9.0, and 1.4 ± 1.0% at pH 13.6 (n = 5, p < 0.05). Owing to the different crosslinking extents and different chain lengths of crosslink bridges, the genipin‐crosslinked chitosan gels showed significant difference in their swelling capability and their resistance against enzymatic hydrolysis, depending on the pH conditions for crosslinking. These results indicated a direct relationship between the mode of crosslinking reaction, and the swelling and enzymatic hydrolysis properties of the genipin‐crosslinked chitosan gels. The ring‐opening polymerization of genipin and the pH‐dependent crosslinking reactions may provide a novel way for the preparation and exploitation of chitosan‐based gels for biomedical applications. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1985–2000, 2005  相似文献   

17.
The synthesis and the properties of selected macromolecular structures based on poly(ethylene oxide), (PEO) are discussed in the present paper. The first part deals with the development of efficient multifunctional anionic initiators aimed to design well‐defined functionalizable star‐shaped PEO's. Different approaches providing access to branched species of controlled hydrophilic /hydrophobic balance will be considered. The second part is devoted to the homopolymerization of amphiphilic bifunctional PEO macromonomers as an efficient way to yield PEO hydrogels directly in water. The extension of that approach to degradable PEO hydrogels or to the copolymerization of macromonomers with star‐shaped PEO's partially functionalized with polymerizable entities will be briefly mentioned. These hydrogels served as semi‐permeable membrane for an artificial pancreas and as a template for the growth of nervous cells.  相似文献   

18.
Stimulus response of photopolymerized 1% and 0.5% N,N′‐methylene bisacrylamide (MBA) crosslinked 10% polyacrylamide (PAAm) hydrogels was studied in nitric acid. The hydrogels swelled exponentially to saturation in 13 h due to the osmotic pressure arising from diffusion of ions in to the gel. MBA (0.5%) gels swell more with larger time constant than 1% MBA gels due to lower bulk modulus. Diffusion coefficient of nitric acid in the hydrogel and polymer‐solvent interaction parameter were estimated from the swelling behavior and discussed. At longer times, the hydrogels deswelled linearly in nitric acid due to molecular modification of amide group by acidic hydrolysis. Degree of swelling and deswelling increase with nitric acid concentration. Raman and FTIR investigations revealed the formation of carboxylic acid due to acidic hydrolysis. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 710–720, 2008  相似文献   

19.
It is well known that chemically patterned substrates can direct the assembly of adsorbed layers or thin films of block copolymers. For a cylinder‐forming diblock copolymer on periodically spot‐patterned substrates, the morphology of the block copolymer follows the pattern at the substrate; however, with different periodic spacing and spot size of the pattern, novel morphologies can be created. Specifically, we have demonstrated that new morphologies that are absent in the bulk system can be tailored by judiciously varying the mismatch between the width of the pattern and the periodic spacing of the bulk block copolymer, the top surface affinity, and spot size. New morphologies can thus be achieved, such as honeycomb and ring structures, which do not appear in the bulk system. These results demonstrate a promising strategy for fabrication of new nanostructures from chemically patterned substrates.  相似文献   

20.
A biodegradable polymer network hydrogel system with both hydrophilic and hydrophobic components was synthesized and characterized. The hydrophilic and hydrophobic components were dextran and poly(D,L )lactic acid (PDLLA), respectively. These two polymers were chemically modified for incorporating unsaturated groups for subsequent UV crosslinking to generate a hydrogel with a three‐dimensional network structure. The effects of the reaction conditions on the synthesis of a dextran derivative of allyl isocyanate (dex‐AI) were studied. All newly synthesized materials were characterized by Fourier transform infrared and NMR. The swelling property of the hydrogels was studied in buffer solutions of different pHs. The results of this study showed that a wide‐range swelling property was obtained by changes in the dex‐AI/PDLLA composition ratio, the type and degree of unsaturated groups incorporated into dextran, and the UV photocrosslinking time. The solvent extraction effect on the swelling property of the hydrogels was also studied. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2392–2404, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号