首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel dinitroxide mediating agent that was suitable for stable free‐radical polymerization was synthesized and used in the block copolymerization of styrene and t‐butyl styrene. Quantitative yields of a novel dinitroxide based on 1,6‐hexamethylene diisocyanate and 4‐hydroxy‐2,2,6,6‐tetramethyl‐1‐piperidinyloxy were obtained. Various experimental parameters, including the nitroxide‐to‐initiator molar ratio, were examined, and it was determined that the polymerization was most controlled under conditions similar to those of conventional 2,2,6,6‐tetramethyl‐1‐piperidinyloxy‐mediated stable free‐radical polymerization. Moreover, the dinitroxide mediator proved to be a viable route for the facile two‐step synthesis of triblock copolymers of styrene and t‐butyl styrene. However, the dinitroxide mediation process resulted in a higher than expected level of nitroxide decomposition, which resulted in polymers possessing a terminal alkoxyamine and an adjacent hydroxylamine rather than a preferred internal bisalkoxyamine. This decomposition resulted in the formation of diblock copolymer species during the triblock copolymer synthesis. Gel permeation chromatography was used to monitor the chain‐end decomposition kinetics, and the determined observed rate constant (5.89 × 10?5 s?1) for decomposition agreed well with previous studies for other dinitroxide mediating agents. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1547–1556, 2004  相似文献   

2.
This investigation reports the preparation of tailor‐made poly(2‐ethylhexyl acrylate) (PEHA) prepared via in situ living radical polymerization in the presence of layered silicates and characterization of this polymer/clay nanocomposite. Being a low Tg (?65 °C) material, PEHA has very good film formation property for which it is used in paints, adhesives, and coating applications. 2‐Ethylhexyl acrylate was polymerized at 90 °C using CuBr and Cu(0) as catalyst in combination with N,N,N′,N″,N″‐pentamethyl diethylenetriamine (PMDETA) as ligand. A tremendous enhancement in reaction rate and polymerization data was achieved when acetone was added as additive to increase the efficiency of the catalyst system. PEHA/clay nanocomposite was prepared at 90 °C using CuBr as catalyst in combination with PMDETA as ligand. Different types of clay with same loading were also used to study the effect on reaction rate. The molecular weight (Mn) and polydispersity index of the prepared nanocomposites were characterized by size exclusion chromatography. The active end group of the polymer chain was analyzed by 1H NMR analysis and by chain extension experiment. Polymer/clay interaction was studied by Fourier Transform Infrared spectrometry and wide‐angle X‐ray diffraction analyses. Distribution of clay in the polymer matrix was studied by the transmission electron microscopy. Thermogravimetric analysis showed that thermal stability of PEHA/clay nanocomposite increases on addition of nanoclay. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

3.
Uracil‐derivatized monomer 6‐undecyl‐1‐(4‐vinylbenzyl)uracil and diaminopyrimidine‐derivatized monomer 2,6‐dioctanoylamido‐4‐methacryloyloxypyrimidine (DMP) were synthesized and polymerized by atom transfer radical polymerization (ATRP). A well‐defined, highly soluble, uracil‐containing polymer, poly[6‐undecyl‐1‐(4‐vinylbenzyl)uracil] (PUVU), was prepared in dioxane at 90 °C with CuBr/1,1,4,7,10,10‐hexamethyltriethylenetetramine as the catalyst and methyl α‐bromophenylacetate as the initiator. PUVU was further used as a template for the ATRP of DMP. The enhanced apparent rate constant of the DMP polymerization in the presence of PUVU indicated that the ATRP of DMP occurred along the PUVU template. The template polymerization produced a stable and insoluble macromolecular complex, PUVU/poly(2,6‐dioctanoylamido‐4‐methacryloyloxypyrimidine). An X‐ray diffraction study confirmed that the complex had strandlike domains. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6607–6615, 2006  相似文献   

4.
Two sets of styrene‐based semifluorinated block copolymers, one with a perfluoroether pendant group and another with a perfluoroalkyl group, were synthesized by atom transfer radical polymerization. Microphase separation of the block copolymers was established by small‐angle X‐ray scattering and differential scanning calorimetry (DSC). DSC measurements also showed that the perfluoroether‐based polymer had a low glass‐transition temperature (?44 °C). Contact‐angle measurements indicated that the semifluorinated block copolymers had low surface energies (ca. 13 mJ/m2). These materials hold promise as low‐surface‐energy additives or surfactants for supercritical CO2 applications. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 853–861, 2004  相似文献   

5.
A hybrid polymerization system that combines the fast reaction kinetics of conventional free radical polymerization and the control of molecular weight and distribution afforded by ATRP has been developed. High‐free radical initiator concentrations in the range of 0.1–0.2 M were used in combination with a low concentration of ATRP catalyst. Conversions higher than 90% were achieved with ATRP catalyst concentrations of less than 20 ppm within 2 h for the hybrid ATRP system as compared with ATRPs where achieving such conversions would take up to 24 h. These reaction conditions lead to living polymerizations where polymer molecular weight increases linearly with monomer conversion. As in living polymerization and despite the fast rates and low ATRP catalyst concentrations, the polydispersity of the produced polymer remained below 1.30. Chain extension experiments from a synthesized macroinitiator were successful, which demonstrate the living characteristics of the hybrid ATRP process. Catalyst concentrations as low as 16 ppm were found to effectively mediate the growth of over 100 polymer chains per catalytic center, whereas at the same time negating the need for post polymerization purification given the low‐catalyst concentration. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2294–2301, 2010  相似文献   

6.
Cobalt‐mediated radical polymerizations (CMRPs) utilizing redox initiation are demonstrated to produce poly(vinyl ester) homopolymers derived from vinyl pivalate (VPv) and vinyl benzoate (VBz), and their block copolymers with vinyl acetate (VAc). Combining anhydrous Co(acac)2, lauroyl peroxide, citric acid trisodium salt, and VPv at 30 °C results in controlled polymerizations that yield homopolymers with Mn = 2.5–27 kg/mol with Mw/Mn = 1.20–1.30. Homopolymerizations of scrupulously purified VBz proceed with lower levels of control as evidenced by broader polydispersities over a range of molecular weights (Mn = 4–16 kg/mol; Mw/Mn = 1.34–1.65), which may be interpreted in terms of the decreased nucleophilicity of these less electron donating propagating polymer chain ends. Based on these results, we demonstrate that sequential CMRP reactions present a viable route to microphase separated poly(vinyl ester) block copolymers as shown by small‐angle X‐ray scattering analyses. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

7.
Poly(N‐phenylitaconimide) (polyPhII) was prepared using initiators for continuous activator regeneration atom transfer radical polymerization of PhII using FeBr3 complexes as catalysts. Conversion reached 69% in 24 h, yielding polyPhII with a number average molecular weight Mn = 11,900 and a molecular weight distribution Mw/Mn = 1.52. Copolymerizations of PhII with styrene at various molar ratios were performed providing a range of polyPhII‐copolySt polymers. When the copolymerization was carried out with higher [St]0 > [PhII]0 ratio, a one‐pot synthesis of poly(St‐alt‐PhII)‐b‐polySt was achieved. The thermal properties of the obtained copolymers were studied by differential scanning calorimetry. PolyPhII prepared by ATRP showed high glass transition temperature (Tg) of 216 °C and the poly(St‐alt‐PhII)‐b‐polySt exhibited two Tgs, at 162 and 104 °C, corresponding to a poly(St‐alt‐PhII) and polySt segments, respectively. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 822–827  相似文献   

8.
Emulsifier‐free, organotellurium‐mediated living radical emulsion polymerizations (emulsion TERPs) of methyl methacrylate (MMA) and n‐butyl methacrylate (BMA) with dimethyl ditelluride were carried out at two different stirring rates (220 rpm and 1000 rpm). In the emulsion TERP of MMA as a hydrophilic monomer, the molecular weight distribution (MWD) controls with both stirring rates were good with high polymerization rate (100% conversion at 1.5 h). On the other hand, in the emulsion TERP of BMA as a hydrophobic monomer, at 220 rpm the polymerization rate was much slow (~50% conversion at 22 h) and the MWD control was bad, but at 1000 rpm the polymerization was completed within 7 h and MWD control was good. These results suggest that monomer transportation from droplets to polymerizing particles via aqueous medium is important for good MWD control and steady polymerization in the emulsion TERP. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

9.
We have successfully demonstrated the preparation of poly(n‐butyl acrylate)‐b‐polystyrene particles without any coagulation by two‐step emulsifier‐free, organotellurium‐mediated living radical emulsion polymerization (emulsion TERP) using poly(methacrylic acid) (PMAA)–methyltellanyl (TeMe) (PMAA30‐TeMe) (degree of polymerization of PMAA, 30) and 4,4′‐azobis(4‐cyanovaleric acid) (V‐501). The final particle size was ~30 nm and second particle nucleation was not observed throughout the polymerization. Mn increased linearly in both steps with conversion and blocking efficiency was ~75%. PDI was improved by increasing radical entry frequency into each polymer particle due to an increase of the polymerization temperature. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
The symmetry, structure and formation mechanism of the structurally self‐complementary { Pd84 } = [Pd84O42(PO4)42(CH3CO2)28]70? wheel is explored. Not only does the symmetry give rise to a non‐closest packed structure, the mechanism of the wheel formation is proposed to depend on the delicate balance between reaction conditions. We achieve the resolution of gigantic polyoxopalladate species through electrophoresis and size‐exclusion chromatography, the latter has been used in conjunction with electrospray mass spectrometry to probe the formation of the ring, which was found to proceed by the stepwise aggregation of {Pd6}? = [Pd6O4(CH3CO2)2(PO4)3Na6?nHn]? building blocks. Furthermore, the higher‐order assembly of these clusters into hollow blackberry structures of around 50 nm has been observed using dynamic and static light scattering.  相似文献   

11.
12.
A reversible catalyst immobilization system via self‐assembly of hydrogen bonding between thymine anchored on silica gel support and 2,6‐diaminopyridine functionalized with a catalyst (copper bromide‐N,N,N′,N′‐tetraethyldiethylenetriamine (TEDETA) complex) was developed for the atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA). At elevated temperatures, the hydrogen bonding disassociated and released the catalyst as free small molecules for catalysis, which effectively mediated a living polymerization of MMA, producing PMMA with controlled molecular weight and narrow molecular weight distribution (<1.3). At room temperature, the catalyst assembled on the silica gel support by hydrogen bonding, and thus could be recovered and reused for a second run of ATRP. The recovered catalyst still mediated a living polymerization of MMA with reduced activity (54–64%), but had much improved control of the polymerization. The resulting PMMA had molecular weights very close to theoretical vales. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 22–30, 2004  相似文献   

13.
Well‐defined (AB)3 type star block copolymer consisting of aromatic polyether arms as the A segment and polystyrene (PSt) arms as the B segment was prepared using atom transfer radical polymerization (ATRP), chain‐growth condensation polymerization (CGCP), and click reaction. ATRP of styrene was carried out in the presence of 2,4,6‐tris(bromomethyl)mesitylene as a trifunctional initiator, and then the terminal bromines of the polymer were transformed to azide groups with NaN3. The azide groups were converted to 4‐fluorobenzophenone moieties as CGCP initiator units by click reaction. However, when CGCP was attempted, a small amount of unreacted initiator units remained. Therefore, the azide‐terminated PSt was then used for click reaction with alkyne‐terminated aromatic polyether, obtained by CGCP with an initiator bearing an acetylene unit. Excess alkyne‐terminated aromatic polyether was removed from the crude product by means of preparative high performance liquid chromatography (HPLC) to yield the (AB)3 type star block copolymer (Mn = 9910, Mw/Mn = 1.10). This star block copolymer, which contains aromatic polyether segments with low solubility in the shell unit, exhibited lower solubility than A2B or AB2 type miktoarm star copolymers. In addition, the obtained star block copolymer self‐assembled to form spherical aggregates in solution and plate‐like structures in film. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
Poly(dimethylsiloxane)‐containing diblock and triblock copolymers were prepared by the combination of anionic ring‐opening polymerization (AROP) of hexamethylcyclotrisiloxane (D3) and nitroxide‐mediated radical polymerization (NMRP) of methyl acrylate (MA), isoprene (IP), and styrene (St). The first step was the preparation of a TIPNO‐based alkoxyamine carrying a 4‐bromophenyl group. The alkoxyamine was then treated with Li powder in ether, and AROP of D3 was carried out using the resulting lithiophenyl alkoxyamine at room temperature, giving functional poly(D3) with Mw/Mn of 1.09–1.16. NMRPs of MA, St, and IP from the poly(D3) at 120 °C gave poly(D3b‐MA), poly(D3b‐St), and poly(D3b‐IP) diblock copolymers, and subsequent NMRPs of St from poly(D3b‐MA) and poly(D3b‐IP) at 120 °C gave poly(D3b‐MA‐b‐St) and poly(D3b‐IP‐b‐St) triblock copolymers. The poly(dimethylsiloxane)‐containing diblock and triblock copolymers were analyzed by 1H NMR and size exclusion chromatography. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6153–6165, 2005  相似文献   

15.
The synthesis of well‐defined diblock copolymers by atom transfer radical polymerization (ATRP) was explored in detail for the development of new colloidal carriers. The ATRP technique allowed the preparation of diblock copolymers of poly(ethylene glycol) (PEG) (number‐average molecular weight: 2000) and ionic or nonionizable hydrophobic segments. Using monofunctionalized PEG macroinitiator, ionizable and hydrophobic monomers were polymerized to obtain the diblock copolymers. This polymerization method provided good control over molecular weights and molecular weight distributions, with monomer conversions as high as 98%. Moreover, the copolymerization of hydrophobic and ionizable monomers using the PEG macroinitiator made it possible to modulate the physicochemical properties of the resulting polymers in solution. Depending on the length and nature of the hydrophobic segment, the nonionic copolymers could self‐assemble in water into nanoparticles or polymeric micelles. For example, the copolymers having a short hydrophobic block (5 < degree of polymerization < 9) formed polymeric micelles in aqueous solution, with an apparent critical association concentration between 2 and 20 mg/L. The interchain association of PEG‐based polymethacrylic acid derivatives was found to be pH‐dependent and occurred at low pH. The amphiphilic and nonionic copolymers could be suitable for the solubilization and delivery of water‐insoluble drugs, whereas the ionic diblock copolymers offer promising characteristics for the delivery of electrostatically charged compounds (e.g., DNA) through the formation of polyion complex micelles. Thus, ATRP represents a promising technique for the design of new multiblock copolymers in drug delivery. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3861–3874, 2001  相似文献   

16.
This article reports the synthesis of atom transfer radical polymerization (ATRP) of active initiators from well‐defined silica nanoparticles and the use of these ATRP initiators in the grafting of poly(n‐butyl acrylate) from the silica particle surface. ATRP does not require difficult synthetic conditions, and the process can be carried out in standard solvents in which the nanoparticles are suspended. This “grafting from” method ensures the covalent binding of all polymer chains to the nanoparticles because polymerization is initiated from moieties previously bound to the surface. Model reactions were first carried out to account for possible polymerization in diluted conditions as it was required to ensure the suspension stability. The use of n‐butyl acrylate as the monomer permits one to obtain nanocomposites with a hard core and a soft shell where film formation is facilitated. Characterization of the polymer‐grafted silica was done from NMR and Fourier transform infrared spectroscopies, dynamic light scattering, and DSC. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 4294–4301, 2001  相似文献   

17.
A one-step procedure based on surface-initiated atom transfer radical polymerization (SI-ATRP) to hydrophilize monodisperse poly(chloromethylstyrene-co-divinylbenzene) beads has been presented in this work, using 2-hydroxyl-3-[4-(hydroxymethyl)-1H-1,2,3-triazol-1-yl]propyl 2-methylacrylate (HTMA) as a monomer. The chain length of the grafted poly(HTMA) was controlled via varying the ratio of HTMA to initiator on the surface of the beads. When using the grafted beads as a stationary phase in hydrophilic interaction chromatography (HILIC), good resolution for nucleobases/nucleosides was obtained with acetonitrile aqueous solution as an eluent; while for phenolic acids and glycosides, they could be eluted and separated in the presence of TFA. The retention time of the solutes increased with the amount of the grafted HTMA. The retention mechanisms of solutes were investigated by the effects of mobile phase composition and buffer pH on the retention of solutes. The results illustrated that the retention behaviors of the tested solutes were dominated by hydrogen bonding interaction and electrostatic interaction. From the chemical structure of the ligands, the modified beads could not only be used as a stationary phase in HILIC, but also act as a useful building block to develop new stationary phases for other chromatographic modes such as affinity media.  相似文献   

18.
The monomer N'-octadecyl-N(alpha)-(4-vinyl)-benzoyl-L-phenylalanineamide (4) based on L-phenylalanine has been simply but effectively synthesized, and its self-assembling properties have been investigated. FTIR and a variable-temperature (1)H NMR spectroscopic investigation demonstrated that the aggregation of compound 4 in various organic solvents is due to the formation of intermolecular hydrogen bonds among the amide moieties. UV/Vis measurements indicated that the multiple pi-pi interactions of the phenyl groups also contribute to the self-assembly. As was observed by (13)C cross-polarization magic-angle spinning (CP/MAS) NMR and variable-temperature (1)H NMR measurements, the ordered alkyl chains also played an important role in the molecular aggregation by van der Waals interactions. Compound 4 was polymerized by surface-initiated atom transfer radical polymerization from porous silica gel to prepare a packing material for HPLC. The results of thermogravimetric analysis showed that a relatively large amount of polymer was grafted onto the silica surface. The organic phase on silica was in a noncrystalline solid form in which the long alkyl chain exists in a less-ordered gauche conformation. Analysis of chromatographic performance for polyaromatic hydrocarbon samples showed higher selectivity than conventional reversed-phase HPLC packing materials.  相似文献   

19.
The “living’/controlled radical polymerization (LRP) of styrene (St) at room temperature is rarely reported. In this work, copper(0) (Cu(0))-mediated radical polymerization of St at room temperature was investigated in detail. Dimethyl sulfoxide (DMSO), N,N-dimethylformamide (DMF) as well as a binary solvent, tetrahydrofuran/1,1,1,3,3,3-hexafluoro-2-propanol were used as the solvents, respectively. Methyl-2-bromopropionate and ethyl 2-bromoisobutyrate were used as the initiators, respectively. The polymerization proceeded smoothly with moderate conversions at room temperature. It was found that DMF was a good solvent with the essential features of LRP, while DMSO was a poor solvent with uncontrollable molecular weights. Besides, the match among the initiator, solvent and molar ratios of reactants can modulate the livingness of the polymerization, and the proper selection of ligand was also crucial to a controlled process. This work provided a first example of Cu(0)-mediated radical polymerization of St at room temperature, which would enrich and strength the LRP technique.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号