首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The preparation of physically crosslinked hydrogels from quasi ABA‐triblock copolymers with a water‐soluble middle block and hydrophobic end groups is reported. The hydrophilic monomer N‐acryloylmorpholine is copolymerized with hydrophobic isobornyl acrylate via a one‐pot sequential monomer addition through reversible addition fragmentation chain‐transfer (RAFT) polymerization in an automated parallel synthesizer, allowing systematic variation of polymer chain length and hydrophobic–hydrophilic ratio. Hydrophobic interactions between the outer blocks cause them to phase‐separate into larger hydrophobic domains in water, forming physical crosslinks between the polymers. The resulting hydrogels are studied using rheology and their self‐healing ability after large strain damage is shown.

  相似文献   


2.
Model copolymers of poly(butadiene) (PB) and poly(dimethylsiloxane) (PDMS), PB‐b‐PDMS‐b‐PB, were synthesized by sequential anionic polymerization (high vacuum techniques) of 1,3‐butadiene and hexamethylciclotrisiloxane (D3) on sec‐BuLi followed by chlorosilane‐coupling chemistry. The synthesized copolymers were characterized by nuclear magnetic resonance (1H NMR), size‐exclusion chromatography (SEC), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). SEC and 1H NMR results showed low polydispersity indexes (Mw/Mn) and variable siloxane compositions, whereas DSC and TGA experiments indicated that the thermal stability of the triblock copolymers depends on the PDMS composition. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2726–2733, 2007  相似文献   

3.
The step‐wise solution self‐assembly of double crystalline organometallic poly(ferrocenyldimethylsilane)‐block‐poly(2‐iso‐propyl‐2‐oxazoline) (PFDMS‐b‐PiPrOx) diblock copolymers is demonstrated. Two block copolymers are obtained by copper‐catalyzed azide‐alkyne cycloaddition (CuAAC), featuring PFDMS/PiPrOx weight fractions of 46/54 (PFDMS30b‐PiPrOx75) and 30/70 (PFDMS30b‐PiPrOx155). Nonsolvent induced crystallization of PFDMS in acetone leads in both cases to cylindrical micelles with a PFDMS core. Afterward, the structures are transferred into water for sequential temperature‐induced crystallization of the PiPrOx corona, leading to hierarchical double crystalline superstructures, which are investigated using scanning electron microscopy, wide angle X‐ray scattering, and differential scanning calorimetry.

  相似文献   


4.
Summary: Based on a hydrophilic poly(ethylene oxide) macroinitiator (PEOBr), a novel amphiphilic diblock copolymer PEO‐block‐poly(11‐(4‐cyanobiphenyloxy)undecyl) methacrylate) (PEO‐b‐PMA(11CB)) was prepared by atom transfer radical polymerization (ATRP) using CuCl/1,1,4,7,10,10‐hexamethyltriethylenetriamine as a catalyst system. An azobenzene block of poly(11‐[4‐(4‐butylphenylazo)phenoxyl]undecyl methacrylate) was then introduced into the copolymer sequence by a second ATRP to synthesize the corresponding triblock copolymer PEO‐b‐PMA(11CB)‐b‐PMA(11Az). Both of the amphiphilic block copolymers had well‐defined structures and narrow molecular‐weight distributions, and exhibited a smectic liquid‐crystalline phase over a wide temperature range.

The amphiphilic triblock copolymer synthesized here.  相似文献   


5.
The nonaqueous dispersion polymerization of styrene in methanol with poly[(4‐methylstyrene)‐co‐(4‐vinyltriethylbenzyl ammonium bromide)]‐b‐polyisobutene as a stabilizer was investigated. There was no observable inducing period or autoacceleration in the polymerization process. The conversion increased almost linearly with the polymerization time as high as 80%. The average sizes of the obtained polystyrene particles increased, and the size distributions of the polystyrene particles tended to become narrower, with increasing conversion. The mechanism of the dispersion polymerization in the presence of polyisobutene‐b‐poly[(4‐methylstyrene)‐co‐(4‐vinyltriethylbenzyl ammonium bromide)] was nucleation/growth. When the stabilizer/monomer ratio (w/w) was greater than 2.0%, the polystyrene dispersion was stable, and there was no observable polymer particle coagulation taking place during the whole polymerization process. The average diameter of the polymer particles can be mediated through changes in the polymerization conversion, monomer, and stabilizer. Nearly monodispersed polystyrene particles with average diameters of approximately 0.45–2.21 μm were obtained under optimal conditions. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2678–2685, 2004  相似文献   

6.
Amphilic triblock copolymers with varying ratios of hydrophilic poly[bis (methoxyethoxyethoxy)phosphazene] (MEEP) and relatively hydrophobic poly(propylene glycol) (PPG) blocks were synthesized via the controlled cationic‐induced living polymerization of a phosphoranimine (Cl3P?NSiMe3) at ambient temperature. A PPG block can function as either a classical hydrophobic block or a less hydrophobic component by varying the nature of a phosphazene block. The aqueous phase behavior of MEEP‐PPG‐MEEP block copolymers was investigated using fluorescence techniques, TEM, and dynamic light scattering (DLS). The critical micelle concentrations (cmcs) of MEEP‐PPG‐MEEP block copolymers were determined to be in the range of 3.7–16.8 mg/L. The mean diameters of MEEP‐PPG‐MEEP polymeric micelles, measured by DLS, were between 31 and 44 nm. The equilibrium constants of pyrene in these micelles ranged from 4.7 × 104 to 9.6 × 104. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 692–699, 2009  相似文献   

7.
A novel class of biomimetic glycopolymer–polypeptide triblock copolymers [poly(L ‐glutamate)–poly(2‐acryloyloxyethyllactoside)–poly(L ‐glutamate)] was synthesized by the sequential atom transfer radical polymerization of a protected lactose‐based glycomonomer and the ring‐opening polymerization of β‐benzyl‐L ‐glutamate N‐carboxyanhydride. Gel permeation chromatography and nuclear magnetic resonance analyses demonstrated that triblock copolymers with defined architectures, controlled molecular weights, and low polydispersities were successfully obtained. Fourier transform infrared spectroscopy of the triblock copolymers revealed that the α‐helix/β‐sheet ratio increased with the poly(benzyl‐L ‐glutamate) block length. Furthermore, the water‐soluble triblock copolymers self‐assembled into lactose‐installed polymeric aggregates; this was investigated with the hydrophobic dye solubilization method and ultraviolet–visible analysis. Notably, this kind of aggregate may be useful as an artificial polyvalent ligand in the investigation of carbohydrate–protein recognition and for the design of site‐specific drug‐delivery systems. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5754–5765, 2004  相似文献   

8.
The self‐assembly of amphiphilic block copolymers has attracted the interest of a large number of research groups in the past two decades. Many examples have been reported using AB diblock copolymers, but the self‐assembly becomes more complex and shows a greater variety if ABC triblock copolymers are used. However, the synthesis of the polymer becomes more demanding since end‐group modifications or chain extensions become necessary. Using various kinds of polymerization techniques, pure triblock copolymers have been reported and their synthesis is covered in this review. Following the synthesis, a detailed and thorough analysis of the self‐assembly behaviour is the next step. We have selected promising and well characterized examples to show the range of self‐assembled structures possible, covering novel shapes of micelles but also polymersomes with an asymmetric membrane. Our selection of current examples in literature show the challenges and chances associated with amphiphilic ABC triblock copolymers.  相似文献   

9.
Well‐defined amphiphilic polymethylene‐b‐poly(ε‐caprolactone)‐b‐poly(acrylic acid) (PM‐b‐PCL‐b‐PAA) triblock copolymers were synthesized via a combination of polyhomologation, ring‐opening polymerization (ROP), and atom transfer radical polymerization (ATRP). First, hydroxyl‐terminated polymethylenes (PM‐OH; Mn = 1100 g mol?1; Mw/Mn = 1.09) were produced by polyhomologation followed by oxidation. Then, the PM‐b‐PCL (Mn = 10,000 g mol?1; Mw/Mn = 1.27) diblock copolymers were synthesized via ROP of ε‐caprolactone using PM‐OH as macroinitiator and stannous octanoate (Sn(Oct)2) as a catalyst. Subsequently, the macroinitiator transformed from PM‐b‐PCL in high conversion initiated ATRPs of tert‐butyl acrylate (tBA) to construct PM‐b‐PCL‐b‐PtBA triblock copolymers (Mn = 11,000–14,000 g mol?1; Mw/Mn = 1.24–1.26). Finally, the PM‐b‐PCL‐b‐PAA triblock copolymers were obtained via the hydrolysis of the PtBA segment in PM‐b‐PCL‐b‐PtBA triblock copolymers. The chain structures of all the polymers were characterized by gel permeation chromatography, proton nuclear magnetic resonance, and Fourier transform infrared spectroscopy. Porous films of such triblock copolymers were fabricated by static breath‐figure method and observed by scanning electron microscope. The aggregates of PM‐b‐PCL‐b‐PAA triblock copolymer were studied by transmission electron microscope. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
A series of NCO/NCS pincer precursors, 3‐(Ar2OCH2)‐2‐Br‐(Ar1N?CH)C6H3 ((Ar1NCOAr2)Br, 3a , 3b , 3c , 3d ) and 3‐(2,6‐Me2C6H3SCH2)‐2‐Br‐(Ar1N?CH)C6H3 ((Ar1NCSMe)Br, 4a and 4b ) were synthesized and characterized. The reactions of [Ar1NCOAr2]Br/ [Ar1NCSMe]Br with nBuLi and the subsequent addition of the rare‐earth‐metal chlorides afforded their corresponding rare‐earth‐metal–pincer complexes, that is, [(Ar1NCOAr2)YCl2(thf)2] ( 5a , 5b , 5c , 5d ), [(Ar1NCOAr2)LuCl2(thf)2] ( 6a , 6d ), [(Ar1NCOAr2)GdCl2(thf)2] ( 7 ), [{(Ar1NCSMe)Y(μ‐Cl)}2{(μ‐Cl)Li(thf)2(μ‐Cl)}2] ( 8 , 9 ), and [{(Ar1NCSMe)Gd(μ‐Cl)}2{(μ‐Cl)Li(thf)2(μ‐Cl)}2] ( 10 , 11 ). These diamagnetic complexes were characterized by 1H and 13C NMR spectroscopy and the molecular structures of compounds 5a , 6a , 7 , and 10 were well‐established by X‐ray diffraction analysis. In compounds 5a , 6a , and 7 , all of the metal centers adopted distorted pentagonal bipyramidal geometries with the NCO donors and two oxygen atoms from the coordinated THF molecules in equatorial positions and the two chlorine atoms in apical positions. Complex 10 is a dimer in which the two equal moieties are linked by two chlorine atoms and two Cl? Li? Cl bridges. In each part, the gadolinium atom adopts a distorted pentagonal bipyramidal geometry. Activated with alkylaluminum and borate, the gadolinium and yttrium complexes showed various activities towards the polymerization of isoprene, thereby affording highly cis‐1,4‐selective polyisoprene, whilst the NCO? lutetium complexes were inert under the same conditions.  相似文献   

11.
Summary: A [TiCl2(salen)] complex and its derivatives with the formula [TiCl2(L)] [L = salen(tBu), salen(di‐Me), salen(di‐tBu), salen(Me)] were synthesized in high yield by reacting the Schiff‐base ligands with TiCl4. [TiCl2{salen(tBu)}] and [TiCl2{salen(di‐tBu)}] have been characterized by single‐crystal X‐ray diffraction. Styrene polymerizations carried out with [TiCl2(salen)] and its derivatives co‐catalyzed by MAO yielded syndiotactic polystyrenes. The catalytic activity and syndiospecificity were dependent on the bulkiness of the ortho substituents in the aryl ring of ligand.

  相似文献   


12.
Novel amphiphilic polypeptoid‐polyester diblock copolymers based on poly(sarcosine) (PSar) and poly(ε‐caprolactone) (PCL) are synthesized by a one‐pot glovebox‐free approach. In this method, sarcosine N‐carboxy anhydride (Sar‐NCA) is firstly polymerized in the presence of benzylamine under N2 flow, then the resulting poly(sarcosine) is used in situ as the macro­initiator for the ring‐opening polymerization (ROP) of ε‐caprolactone using tin(II) octanoate as a catalyst. The degree of poly­merization of each block is controlled by various feed ratios of monomer/initiator. The diblock copolymers with controlled molecular weight and narrow molecular weight distributions (ĐM < 1.2) are characterized by 1H NMR, 13C NMR, and size‐exclusion chromatography. The self‐assembly behavior of PSar‐b‐PCL in water is investigated by dynamic light scattering (DLS) and transmission electron microscopy. DLS results reveal that the diblock copolymers associate into nanoparticles with average hydrodynamic diameters (DH) around 100 nm in water, which may be used as drug delivery carriers.

  相似文献   


13.
14.
A series of triblock copolymers of the type A-B-A were synthesized using tungsten chloride-anchored hydroxyl-terminated polybutadiene (HTPBD) catalyst. Monomers like phenylacetylene (PA), norbornene (NBE), cyclooctadiene (COD), and cyclopentene (CP) were polymerized via metathesis pathway using this catalyst. The efficiency of this anchored catalyst in producing A-B-A triblock copolymers was explored and compared under the same experimental conditions like solvent system and reaction temperature. This anchored catalyst upon reaction with PA produced polyPA-block-polyBD-block-polyPA in high yield and with low polydispersity (pdi) compared to HTPBD. The formation of the triblock copolymers by this method was evinced by NMR, TGA, and GPC data as well as by delinking and inverse addition studies. All the cycloalkenes polymerized via ring-opening metathesis polymerization (ROMP) with the catalyst and yielded triblock copolymers. The mode of synthesis of triblocks could be construed as switching the mechanism of polymerization from radical to olefin metathesis. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2601–2610, 1998  相似文献   

15.
The controlled atom transfer radical polymerization of an ionic liquid, 1‐(11‐acryloylundecyl)‐3‐methyl imidazolium bromide (ILBr), from both ends of a telechelic poly(propylene oxide) (PPO) macroinitiator, end‐functionalized with bromoisobutyryloyl is reported. The resulting highly water‐soluble triblock, poly(ILBr‐b‐PO‐b‐ILBr) is multistimuli responsive. This new class of triblocks exhibits classical surface activity in lowering surface tension at the air–water interface and in modifying wetting in waterborne coatings. It also immunizes model colloids against coagulation induced by Debye–Hückel (indifferent electrolyte) electrostatic screening. Further, sol–gel thermoreversibility is unexpectedly found as an additional form of stimuli responsiveness.  相似文献   

16.
The effect of the triblock copolymer poly[styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene] (SEBS) on the formation of the space charge of immiscible low‐density polyethylene (LDPE)/polystyrene (PS) blends was investigated. Blends of 70/30 (wt %) LDPE/PS were prepared through melt blending in an internal mixer at a blend temperature of 220 °C. The amount of charge that accumulated in the 70% LDPE/30% PS blends decreased when the SEBS content increased up to 10 wt %. For compatibilized and uncompatibilized blends, no significant change in the degree of crystallinity of LDPE in the blends was observed, and so the effect of crystallization on the space charge distribution could be excluded. Morphological observations showed that the addition of SEBS resulted in a domain size reduction of the dispersed PS phase and better interfacial adhesion between the LDPE and PS phases. The location of SEBS at a domain interface enabled charges to migrate from one phase to the other via the domain interface and, therefore, resulted in a significant decrease in the amount of space charge for the LDPE/PS blends with SEBS. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2813–2820, 2004  相似文献   

17.
Zhongke Yuan  Dacheng Yang  Li Fan 《中国化学》2011,29(10):2169-2174
The temperature‐induced molecular chain motions of styrenic triblock copolymers (SBC), i.e. polystyrene‐block‐polybutadiene‐block‐polystyrene (SBS) and polystyrene‐block‐poly(ethylene‐co‐1‐butene)‐block‐polystyrene (SEBS), were studied by intrinsic fluorescence method. For SBS, the glass transition temperatures (Tgs) of B block and S block obtained by intrinsic fluorescence method were in good agreement with differential scanning calorimetry measurements (DSC). In the case of SEBS, an isoemission point was observed at about 310 nm at elevated temperatures, suggesting the slight conversion between the monomer and excimer emission. On this basis, the molecular chain motion of SEBS was monitored by both fluorescence intensity and excimer/monomer fluorescence ratio. Besides the Tgs of S block and EB blocks, a melting point (Tm) of weak crystalline in EB block was unambiguously determined by intrinsic fluorescence. Furthermore, it was found that the melting process directly led to the slight loosening of PS segments in interface and consequently the reduction of the amount of excimer. A reasonable mechanism was proposed to describe the molecular chain movements and phase transitions of SEBS upon heating. Moreover, the influence of temperature on the apparent activation energy of non‐radiative process (EaT) around Tg of S block was much stronger than that around Tg of B or EB blocks.  相似文献   

18.
Amphiphilic block‐graft copolymers mPEG‐b‐P(DTC‐ADTC‐g‐Pal) were synthesized by ring‐opening polymerization of 2,2‐dimethyltrimethylene carbonate (DTC) and 2,2‐bis(azidomethyl)trimethylene carbonate (ADTC) with poly(ethylene glycol) monomethyl ether (mPEG) as an initiator, followed by the click reaction of propargyl palmitate and the pendant azido groups on the polymer chains. Stable micelle solutions of the amphiphilic block‐graft copolymers could be prepared by adding water to a THF solution of the polymer followed by the removal of the organic solvent by dialysis. Dynamic light scattering measurements showed that the micelles had a narrow size distribution. Transmission electron microscopy images displayed that the micelles were in spherical shape. The grafted structure could enhance the interaction of polymer chains with drug molecules and improve the drug‐loading capacity and entrapment efficiency. Further, the amphiphilic block‐graft copolymers mPEG‐b‐P(DTC‐ADTC‐g‐Pal) were low cytotoxic and had more sustained drug release behavior. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

19.
This article describes the synthesis and characterization of [polystyrene‐b‐poly(2‐vinylpyridine)]n star‐block copolymers with the poly(2‐vinylpyridine) blocks at the periphery. A two‐step living anionic polymerization method was used. Firstly, oligo(styryl)lithium grafted poly(divinylbenzene) cores were used as multifunctional initiators to initiate living anionic polymerization of styrene in benzene at room temperature. Secondly, vinylpyridine was polymerized at the periphery of these living (polystyrene)n stars in tetrahydrofuran at ?78 °C. The resulting copolymers were characterized using size exclusion chromatography, multiangle laser light scattering, 1H NMR, elemental analysis, and intrinsic viscosity measurements. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3949–3955, 2007  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号