首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Monosubstituted and disubstituted 3,4‐propylenedioxythiophenes were synthesized and polymerized by both chemical and electrochemical methods. All the monomers were characterized for their molecular structures, and the polymers were characterized for their electrochemical properties. The disubstituted derivatives showed higher contrast than the corresponding monoalkyl derivatives. The highest electrochromic contrast of 89% was exhibited by a dibenzyl derivative, but the derivative was insoluble. On the other hand, the electrochemically polymerized dihexyl‐ and didodecyl‐substituted poly(3,4‐propylenedioxythiophene)s exhibited 74 and 77% electrochromic contrast, respectively, and were soluble. The molecular weights of the chemically and electrochemically synthesized polymers were analyzed by gel permeation chromatography. The chemically synthesized polymers showed higher molecular weights. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 419–428, 2005  相似文献   

2.
Poly(3,4‐ethylenedioxythiophene) (PEDOT) films are deposited, using an electroless method, onto flexible plastic poly(ethylene terephthalate) (PET) substrates of approximately 20×6 cm2. The sheet resistance of a PEDOT–PET film is approximately 600 Ω per square, and the nanoscale conductivity is 0.103 S cm?1. A plastic electrochromic PEDOT–Prussian blue device is constructed. The device undergoes a color change of pale blue to deep violet–blue reversibly over 1000 cycles, thus demonstrating its use as a light‐modulating smart window. The PEDOT–PET film is also used in a quantum dot solar cell, and the resulting photoelectrochemical performance and work function indicate that it is also promising for photovoltaic cells. The high homogeneity of the PEDOT deposit on PET, the optimal balance between conductivity and optical transparency, and the demonstration of its use in an electro‐optical device and a solar cell, offer the opportunity to use this electrode material in a variety of low‐cost optoelectronic devices.  相似文献   

3.
A new near‐infrared switchable electrochromic polymer containing carbazole pendant (poly‐SNSC), synthesized by electrochemical polymerization of 2,5‐bis‐dithienyl‐1H‐pyrrole (SNS) main chain, has been prepared. The electrochemical and optical properties of SNSC monomer and its polymer have been investigated. Because of having two different electro‐donor moieties; that is, carbazole and SNS, SNSC gave two separate electrochemical oxidation and also light brown color of the film in the neutral state turn into gray on oxidation. An electrochromic device, contructed in the sandwich configuration [indium tin oxide (ITO)‐coated glass/anodically coloring polymer (poly‐SNSC)//gel electrolyte//cathodically coloring polymer (PEDOT)/ITO‐coated glass] and exhibited a high coloration efficiency (1216 cm2 C–1), a very short response time (about 0.3 s), low driving voltage, and a high redox stability. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

4.
Synthesis of a novel macroinimer comprising poly(ε‐caprolactone) (PCL) and thiophene (Th) and its use in electrochromic device (ECD) application have been reported. First, a novel Th monomer ( 5 ) with miktofuntional initiator groups (primary hydroxyl and tertiary bromide at the third position of the thiophene ring) was synthesized in a four‐step reaction sequence. Density functional theory‐predicted bond lengths, angles, and vibrations of 5 were in good agreement with available experimental vibrational spectra. Subsequently, ring‐opening polymerization of ε‐caprolactone (ε‐CL) was carried out in bulk using 5 as the initiator and tin(II) 2‐ethylhexanoate (Sn(Oct)2) as the catalyst at 115 °C, which led to α‐thiophene end‐capped PCL macroinimer (PCL‐Th). Furthermore, PCL‐Th macroinimer was used in electrochemical copolymerization with pyrrole (Py) and Th. PCL‐Th/PTh copolymer film synthesized on indium tin oxide‐coated glass slide showed electrochromic behavior. Optical analyses of the PCL‐Th/PTh copolymer film indicated that the copolymer film was suitable to be used as an anodically coloring material for ECD applications. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

5.
Poly(3,4‐ethylenedioxythiophene) (PEDOT) solid and hollow microspheres were successfully synthesized by simply adjusting the concentration of 3,4‐ethylenedioxythiophene (EDOT) and the molar ratio of EDOT to ammonium persulfate (APS) (represented by (EDOT)/(APS)), respectively. Microwave absorbing properties of PEDOT microspheres with tunable reflection loss (RL) and microwave frequency band were described in detail. The relationships between the conductivity and RL of PEDOT microspheres were also discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Conducting nanofiber composed of poly(vinyl alcohol) (PVA), graphene quantum dots (GQDs) and poly(3,4‐ethylenedioxythiophene) (PEDOT) was prepared for symmetrical supercapacitor through electrospinning and electropolymerization techniques. The formation of PVA nanofibers with the addition of GQDs was excellently prepared with the average diameter of 55.66 ± 27 nm. Field emission scanning electron microscopy images revealed that cauliflower‐like structure of PEDOT was successfully coated on PVA‐GQD electrospun nanofibers. PVA‐GQD/PEDOT nanocomposite exhibited the highest specific capacitance of 291.86 F/g compared with PVA/PEDOT (220.73 F/g) and PEDOT (161.48 F/g). PVA‐GQD/PEDOT also demonstrated a high specific energy and specific power of 16.95 and 984.48 W/kg, respectively, at 2.0 A/g current density. PVA‐GQD/PEDOT exhibited the lowest resistance of charge transfer (Rct) and equivalent series resistance compared with PEDOT and PVA/PEDOT, indicating that the fast ion diffusion between the electrode and electrolyte interface. PVA‐GQD/PEDOT nanocomposite also showed an excellent stability with retention of 98% after 1000 cycles. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 50–58  相似文献   

7.
Composite films of poly(3,4‐ethylenedioxythiophene) (PEDOT)‐coated over functionalized multiwalled coiled and linear carbon nanotubes (CNTs) have been fabricated by a simple oxidative electropolymerization route. The nanotubular morphology of the polymer–CNT composite is responsible for the lower charge transfer impedance, lower internal resistance, and superior capacitive response in comparison to that shown by the control PEDOT film doped by trifluoromethanesulfonate ions. This facile electrochemistry exhibited by the PEDOT–CNT composite film ensues in a remarkably high coloration efficiency of 367 cm2 · C−1 at 550 nm, hitherto unrealized for PEDOT; thus demonstrating the huge potential the PEDOT–CNT composite film has as cathode for the entire spectrum of electrochromic devices.

  相似文献   


8.
A nonaqueous dispersion of poly(3,4‐ethylenedioxythiophene) (PEDOT) was prepared with the use of polymeric ionic liquid (PIL) as a polymerization template and phase transfer medium. A detailed investigation was performed to understand the role of PIL in the course of polymerization and phase transfer reaction. On the basis of our findings from X‐ray photoelectric spectroscopy (XPS), we propose a mechanism by which the PIL leads to the nanostructured PEDOT colloids in various organic solvents and thus facilitating smoother surface morphologies of the PEDOT‐PIL films. In addition, the enhancement of charge transport was observed for PEDOT‐PIL complex when compared with PEDOT without PIL. Raman spectroscopy indicates that there is a reduced interaction between the charge carriers on the PEDOT and the counter ions bound to PIL, thus promoting charge carrier hopping rates. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6872–6879, 2008  相似文献   

9.
Oligo(oxyethylene) chains cross‐linked 2,2’‐bithiophene (BT‐E5‐BT) has been synthesized successfully. A free‐standing copolymer film based on BT‐E5‐BT and 3,4‐ethylenedioxythiophene (P(BT‐E5‐BT‐co‐EDOT)) has been synthesized by electrochemical polymerization. The electrical conductivity of P(BT‐E5‐BT‐co‐EDOT) copolymer (16 S m?1) has improved by four orders of magnitude compared to the homopolymer of BT‐E5‐BT (P(BT‐E5‐BT), 5 × 10?3 S m?1) at room temperature. Both homopolymer and copolymer films exhibit well‐defined redox and satisfied coloration efficiency. Spectroelectrochemistry studies indicate that the P(BT‐E5‐BT‐co‐EDOT) has a lower band gap in the range of 1.83–1.90 eV and shows more plentiful electrochromic colours (green, blue, purple and salmon pink) compared with the homopolymer P(BT‐E5‐BT). The Copolymer P(BT‐E5‐BT‐co‐EDOT) shows the moderate optical contrast (26% of 480 nm) and coloration efficiency (205.41 cm?1 C?2). The copolymer method provides a novel way to fabricate a free‐standing organic electrochromic device. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1583–1592  相似文献   

10.
Transparent [90% transmittance at 550 nm at a sheet resistance (Rs) of 279 Ω sq?1] poly(3,4‐ethylenedioxythiophene) (PEDOT) films with electrical conductivities up to 1354 S cm?1 are prepared using base‐inhibited vapor phase polymerization at atmospheric pressure. The influence of reaction conditions, such as temperature and growth time, on the film formation is investigated. A simple and convenient two‐electrode method is used for the in situ measurement of resistance, enabling to investigate the growth mechanism of polymer films and the influence of different parameters (relative humidity and the amount of oxidant) on the film growth. Low humidity exerts a detrimental effect on film growth and conductivity. In situ Rs measurements suggest that a large structural change occurs upon washing the PEDOT‐oxidant film. © 2014 Wiley Periodicals, Inc. J Polym Sci Part B: Polym. Phys. 2014 , 52, 561–571  相似文献   

11.
CE can efficiently separate poly(3,4‐ethylenedioxythiophene)/poly(styrene sulfonic acid) (PEDOT/PSS) complexes and free PSS in dispersions and can be used to estimate the degree of PSS doping. We investigated the doping efficiency of PSS on PEDOT in dispersions using CE and its effect on the conductivity of the resulting PEDOT/PSS films. Results of this study indicate that dispersions containing 1:2.5–3 EDOT:PSS feed ratio (by weight) exhibiting 72–73% PSS doping generate highly processable and highly conductive films. Conductivity can be optimized by limiting the time of reaction to 12 h. At this point of the reaction, the PEDOT/PSS segments, appearing as broad band in the electropherogram, could still exist in an extended coil conformation favoring charge transport resulting in high conductivity. Above a threshold PEDOT length formed at reaction times longer than 12 h, the PEDOT/PSS complex, appearing as spikes in the electropherogram, most likely have undergone a conformational change to coiled core‐shell structure restricting charge transport resulting in low conductivity. The optimal conductivity (5.2 S/cm) of films from dispersions synthesized for 12 h is significantly higher than those from its commercial equivalent Clevios P and other reported values obtained under similar conditions without the addition of codopants.  相似文献   

12.
A copolymer of 1‐(4‐fluorophenyl)‐2,5‐di(thiophen‐2‐yl)‐1H‐pyrrole (FPTP) with 3,4‐ethylene dioxythiophene (EDOT) was electrochemically synthesized and characterized. While poly(FPTP) (P(FPTP)) has only two colors in its oxidized and neutral states (blue and yellow), its copolymer with EDOT has five different colors (purple, red, light gray, green, and blue). Electrochromic devices based on P(FPTP‐co‐EDOT) and poly(3,4‐ethylenedioxythiophene) (PEDOT) were constructed and characterized. The oxidized state of the device shows blue color whereas it shows purple for the reduced state. At several potentials the device has good transparency with green and gray colors. Maximum contrast (Δ%T) and switching time of the device were measured as 23% and 1.1 s at 555 nm. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4496–4503, 2007  相似文献   

13.
In this paper, three‐dimensionally ordered macroporous (3DOM) poly(3,4‐ethylenedioxythiophene) (PEDOT) films were electropolymerized from an ionic liquid, 1‐butyl‐3‐methylimidazolium hexafluorophosphate ([Bmim]PF6). The electrochromic performances of the 3DOM PEDOT films were studied. The 3DOM films exhibited high transmittance modulation (41.2 % at λ=580 nm), high ionic fast switching speeds (0.7 and 0.7 s for coloration and bleaching, respectively), and enhanced cycling stability relative to that exhibited by the dense PEDOT film. The relationship between the declining behavior of the transmittance modulation and the nanostructure of the film was investigated. A three‐period decay process was proposed to understand the declining behavior. The 3D interconnected macroporous nanostructure is beneficial for fast ion and electron transportation, high ion accessibility, and maintenance of structure integrity, which result in enhanced cycling stability and fast switching speeds.  相似文献   

14.
High‐quality free‐standing poly(1H‐benzo[g]indole) (PBIn) films were synthesized electrochemically by direct anodic oxidation of 1H‐benzo[g]indole (BIn) in boron trifluoride diethyl etherate. PBIn films obtained from this medium showed good electrochemical behavior and better thermal stability with a conductivity of 0.29 S cm?1. PBIn films with low band gap value (1.59 eV) were insoluble in acetone and tetrahydrofuran. The structure and morphology of the polymer were studied by UV–vis, FTIR, and scanning electron microscopy, respectively. The results of quantum chemistry calculations and the spectroscopies of dedoped PBIn indicate that the polymerization of BIn mainly occurs via C(2) and C(5) position. The polymer film was compact with regular nanoparticles on the surface. Fluorescent spectral studies indicate that solid‐state PBIn film is a good yellow‐light‐emitter. Thermal stability of PBIn film is higher than poly(indole‐6‐carboxylic acid), poly(5‐formylindole), and polyindole. To the best of our knowledge, this is the first report on the electrosynthesis of free‐standing polyindole derivatives as yellow‐light‐emitter. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2730–2738  相似文献   

15.
Optical and electrochemical properties of regiosymmetric and soluble alkylenedioxyselenophene‐based electrochromic polymers, namely poly(3,3‐dibutyl‐3,4‐dihydro‐2H‐selenopheno[3,4‐b][1,4]dioxephine) (PProDOS‐C4), poly(3,3‐dihexyl‐3,4‐dihydro‐2H‐selenopheno[3,4‐b][1,4]dioxephine) (PProDOS‐C6), and poly(3,3‐didecyl‐3,4‐dihydro‐2H‐selenopheno[3,4‐b][1,4]dioxephine) (PProDOS‐C10), are highlighted. It is noted that these unique polymers have low bandgaps (1.57–1.65 eV), and they are exceptionally stable under ambient atmospheric conditions. Polymer films retained 82–97% of their electroactivity after 5000 cycles. The percent transmittance of PProDOS‐Cn (n = 4, 6, 10) films found to be between 55 and 59%. Furthermore, these novel soluble PProDOS‐Cn polymers showed electrochromic behavior: a color change form pure blue to highly transparent state in a low switching time (1.0 s) during oxidation with high coloration efficiencies (328–864 cm2 C?1) when compared to their thiophene analogues. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

16.
The synthesis by oxidative polymerization of well‐defined poly(3,4‐ethylenedioxythiophene) (PEDOT) nano‐objects in the presence of modified and unmodified poly(N‐vinylpyrrolidone)‐based copolymers used as stabilizers in aqueous media is reported. Ammonium persulfate or a mixture of ammonium persulfate with CuCl2 or CuBr2 was used as oxidants. The effects of several parameters such as the molar mass and the concentration of the stabilizer as well as the nature of the oxidants on the size, morphology, and the conductivity of the PEDOT particles have been investigated. The distribution of the reactive moieties along the copolymer stabilizer backbone was shown to be crucial to get well‐defined PEDOT nano‐objects. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3841–3855, 2010  相似文献   

17.
《Electroanalysis》2005,17(24):2281-2286
A poly(3,4‐ethylenedioxythiophene) (PEDOT) modified glassy carbon electrode (GCE) was used to determine uric acid in the presence of ascorbic acid at physiological pH facilitating a peak potential separation of ascorbic acid and uric acid oxidation (ca. 365 mV), which is the largest value reported so far in the literature. Also, an analytical protocol involving differential pulse voltammetry has been developed using a microchip electrode for the determination of uric acid in the concentration range of 1 to 20 μM in presence of excess of ascorbic acid.  相似文献   

18.
Poly(3,4‐ethylenedioxypyrrole) (PEDOP)–Ag and PEDOP–Au nanocomposite films have been synthesized for the first time by electropolymerization of the conducting‐polymer precursor in a waterproof ionic liquid, 1‐butyl‐1‐methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, followed by Ag/Au nanoparticle incorporation. That the Ag/Au nanoparticles are not adventitious entities in the film is confirmed by a) X‐ray photoelectron spectroscopy, which provides evidence of Ag/Au–PEDOP interactions through chemical shifts of the Ag/Au core levels and new signals due to Ag–N(H) and Au–N(H) components, and b) electron microscopy, which reveals Au nanoparticles with a face‐centered‐cubic crystalline structure associated with the amorphous polymer. Spectroelectrochemistry of electrochromic devices based on PEDOP–Au show a large coloring efficiency (ηmax=270 cm2 C?1, λ=458 nm) in the visible region, for an orange/red to blue reversible transition, followed by a second, remarkably high ηmax of 490 cm2 C?1 (λ=1000 nm) in the near‐infrared region as compared to the much lower values achieved for the neat PEDOP analogue. Electrochemical impedance spectroscopy studies reveal that the metal nanoparticles lower charge‐transfer resistance and facilitate ion intercalation–deintercalation, which manifests in enhanced performance characteristics. In addition, significantly faster color–bleach kinetics (five times of that of neat PEDOP!) and a larger electrochemical ion insertion capacity unambiguously demonstrate the potential such conducting‐polymer nanocomposites have for smart window applications.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号