首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A comparative investigation was undertaken for the electrosynthesis and electrochemical properties of three different electroactive polymers having a conjugated core building block, dibenzo[a,c]phenazine. A series of monomers has been synthesized as regards to thiophene based units; thiophene, 3‐hexyl thiophene, and 3,4‐ethylenedioxythiophene. The effects of different donor substituents on the polymers' electrochemical properties were examined by cyclic voltammetry. Introducing highly electron‐donating (ethylene dioxy) group to the monomer enables solubility while also lowering the oxidation potential. The planarity of the monomer unit enhances π‐stacking and consequently lowering the Eg from 2.4 eV (PHTP) to 1.7 (PTBP). Cyclic voltammetry and spectroelectrochemical measurements revealed that 2,7‐bis(4‐hexylthiophen‐2‐yl)dibenzo[a,c]phenazine (HTP) and 2,7‐bis(2,3‐dihydrothieno[3,4‐b][1,4]dioxin‐5‐yl)dibenzo[a,c]phenazine (TBP) possessed electrochromic behavior. The colorimetry analysis revealed that while PTBP have a color change from red to blue, PHTP has yellow color at neutral state and blue color at oxidized state. Hence the presence of the phenazine derivative as the acceptor unit causes a red shift in the polymers' absorption to have a blue color. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1714–1720, 2010  相似文献   

2.
Activated dihydridocarbonyltris(triphenylphosphine)ruthenium catalyzes the cyclodimerization of both bis(2‐thienyl)acetylene and bis(3‐thienyl)acetylene to yield, respectively, 4,5,6‐tris(2′‐thienyl)‐benzo[b]thiophene and 5,6,7‐tris(3′‐thienyl)benzo[b]thiophene. These fluoresce in the blue. Both undergo irreversible one electron oxidation at & sim1.1 mV versus Ag/Ag+ electrode, consistent with oxidation of the benzo[b]thiophene nuclei rather than the substituent thiophene rings.  相似文献   

3.
Synthesis of a novel macroinimer comprising poly(ε‐caprolactone) (PCL) and thiophene (Th) and its use in electrochromic device (ECD) application have been reported. First, a novel Th monomer ( 5 ) with miktofuntional initiator groups (primary hydroxyl and tertiary bromide at the third position of the thiophene ring) was synthesized in a four‐step reaction sequence. Density functional theory‐predicted bond lengths, angles, and vibrations of 5 were in good agreement with available experimental vibrational spectra. Subsequently, ring‐opening polymerization of ε‐caprolactone (ε‐CL) was carried out in bulk using 5 as the initiator and tin(II) 2‐ethylhexanoate (Sn(Oct)2) as the catalyst at 115 °C, which led to α‐thiophene end‐capped PCL macroinimer (PCL‐Th). Furthermore, PCL‐Th macroinimer was used in electrochemical copolymerization with pyrrole (Py) and Th. PCL‐Th/PTh copolymer film synthesized on indium tin oxide‐coated glass slide showed electrochromic behavior. Optical analyses of the PCL‐Th/PTh copolymer film indicated that the copolymer film was suitable to be used as an anodically coloring material for ECD applications. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

4.
By employing planar thieno[3,2‐b]thiophene (TT) as end‐capped units and famous 3,4‐ethylenedioxythiophene (EDOT) or its all‐sulfur analog 3,4‐ethylenedithiathiophene (EDTT) as cores, two conjugated oligomer, TT‐EDOT‐TT and TT‐EDTT‐TT, have been synthesized and electropolymerized into electrochromic polymer films, P(TT‐EDOT‐TT) and P(TT‐EDTT‐TT), respectively. Due to strongly noncovalent inter/intramolecular interactions from S? S attraction of TT‐EDTT‐TT, it has twisted molecular configuration in contrast to planar TT‐EDOT‐TT. Spectroscopic, electrochemical, morphological as well as theoretical calculation studies of these oligomers or polymers were carried out to reveal the significant influence of such molecular geometry on their physicochemical and optoelectronic properties. According to electrochromic kinetics, P(TT‐EDTT‐TT) presented preferable electrochromic behavior such as the higher optical contrast (70.8%), favorable coloration efficiency (331.3 cm2 C?1) and fast response time (0.72 s). This research will help us deeply understand the effect of spatial organization of precursor molecules on the properties of electrochromic polymers and provides a promising strategy to develop high‐performance electrochromic materials. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 1041–1048  相似文献   

5.
A simple and sensitive method is described for the electrochemical determination of shikonin, a widely used anti‐tumoral agent, based on its electrochemical oxidation at a nanostructured poly(hydroxymethylated‐3,4‐ethylenedioxy‐thiophene) (PEDOT‐MeOH) electrode, which was fabricated by a facile electropolymerization method. Compared with bare and poly(3,4‐ethylenedioxythiophene) (PEDOT) electrodes, the PEDOT‐MeOH film exhibited a distinctly higher activity for the electrooxidation of shikonin. The PEDOT‐MeOH electrode showed a wide linear response for shikonin in the concentration range from 1.0 nM to 10.0 µM with detection limit of 0.3 nM. Furthermore, the PEDOT‐MeOH electrode displayed high stability, good reproducibility and high sensitivity for the detection of shikonin.  相似文献   

6.
Summary: Optically active poly[(R)‐ or (S)‐1,4‐bis(2‐(3′,4′‐ethylenedioxy)thienyl)‐2‐benzoic acid 1‐methylheptyl ester] was prepared by an electrochemical technique and characterized by circular dichroism measurements. It was found that the optical activity and optical rotation of the film could be controlled by adjusting the electronic state of the electrochemical process. Polymer films prepared in the oxidized state exhibit a weak Cotton effect, while the reduced polymer film exhibits the expected mirror‐image bisignate Cotton effect in the region of the ππ* transition of the polymer main chain. These results indicate that the main chain itself is chiral in the film state. This procedure has great potential for the preparation of functional electrochromic devices and the improved preparation of durable electrochromic devices based on the good film‐forming properties of the chiral polymer.

Cyclic voltammogram and CD spectra of the chiral polymer thin film produced here.  相似文献   


7.
Electrochromic polymers called poly(3,4‐dihydro‐3,3‐bis ((naphthalen‐1‐yl)methyl)‐2H‐thieno[3,4‐b][1,4]dioxepine) (PProDOT‐Np2), poly(3,3‐dibenzyl‐3,4‐dihydro‐2H‐selenopheno[3,4‐b][1,4]dioxepine), and poly(3,3‐dibenzyl‐3,4‐dihydro‐2H‐thieno[3,4‐b][1,4]dioxepine) were synthesized electrochemically and the effect of substituents and heteroatoms on the electrochromic properties were investigated for the similar systems. All polymers show electrochromism from a colored state when neutralized to transmissive when oxidized. Although, increasing bulky size (PProDOT‐Np2) causes lower coloration efficiency (CE) as well as lower optical contrast, the replacement of S atom by Se atom resulted in a lower band gap polymer with a higher CE than its thiophene analog. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

8.
Optical and electrochemical properties of regiosymmetric and soluble alkylenedioxyselenophene‐based electrochromic polymers, namely poly(3,3‐dibutyl‐3,4‐dihydro‐2H‐selenopheno[3,4‐b][1,4]dioxephine) (PProDOS‐C4), poly(3,3‐dihexyl‐3,4‐dihydro‐2H‐selenopheno[3,4‐b][1,4]dioxephine) (PProDOS‐C6), and poly(3,3‐didecyl‐3,4‐dihydro‐2H‐selenopheno[3,4‐b][1,4]dioxephine) (PProDOS‐C10), are highlighted. It is noted that these unique polymers have low bandgaps (1.57–1.65 eV), and they are exceptionally stable under ambient atmospheric conditions. Polymer films retained 82–97% of their electroactivity after 5000 cycles. The percent transmittance of PProDOS‐Cn (n = 4, 6, 10) films found to be between 55 and 59%. Furthermore, these novel soluble PProDOS‐Cn polymers showed electrochromic behavior: a color change form pure blue to highly transparent state in a low switching time (1.0 s) during oxidation with high coloration efficiencies (328–864 cm2 C?1) when compared to their thiophene analogues. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

9.
Oligo(oxyethylene) chains cross‐linked 2,2’‐bithiophene (BT‐E5‐BT) has been synthesized successfully. A free‐standing copolymer film based on BT‐E5‐BT and 3,4‐ethylenedioxythiophene (P(BT‐E5‐BT‐co‐EDOT)) has been synthesized by electrochemical polymerization. The electrical conductivity of P(BT‐E5‐BT‐co‐EDOT) copolymer (16 S m?1) has improved by four orders of magnitude compared to the homopolymer of BT‐E5‐BT (P(BT‐E5‐BT), 5 × 10?3 S m?1) at room temperature. Both homopolymer and copolymer films exhibit well‐defined redox and satisfied coloration efficiency. Spectroelectrochemistry studies indicate that the P(BT‐E5‐BT‐co‐EDOT) has a lower band gap in the range of 1.83–1.90 eV and shows more plentiful electrochromic colours (green, blue, purple and salmon pink) compared with the homopolymer P(BT‐E5‐BT). The Copolymer P(BT‐E5‐BT‐co‐EDOT) shows the moderate optical contrast (26% of 480 nm) and coloration efficiency (205.41 cm?1 C?2). The copolymer method provides a novel way to fabricate a free‐standing organic electrochromic device. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1583–1592  相似文献   

10.
A novel electroactive spirocyclododecylfluorene monomer named 2,7‐bis(carbazol‐9‐yl)‐9,9′‐spiro[cyclododecane‐1,9′‐fluorene] (SFC) was synthesized and electrochemically polymerized to give a very stable multi‐electrochromic polymer (poly‐SFC). Two separate oxidation processes were observed for both SFC monomer and poly‐SFC that carries two carbazole units. The polymeric film of poly‐SFC was coated onto ITO/glass surface, and it shows different colors (transparent, yellowish green, green, and dark green) upon stepwise oxidations. An electrochromic device based on poly‐SFC was assembled in the sandwich cell configuration of ITO/poly‐SFC//gel electrolyte//PEDOT/ITO. Poly‐SFC exhibits 90% of transparency at neutral state and a high contrast ratio (ΔT = 58% at 800 nm). This device constructed from it represents a response time of about 1 s, high coloration efficiency (1377 cm2 C–1) and retained its performance by 96.4% even after 1000 cycles. Exhibiting high transparency at neutral state, reversible redox behavior, resistance to overoxidation, and especially high contrast ratio at near IR region can make poly‐SFC be useful and promising candidate for electrochromic applications despite having a relatively slow response time. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

11.
Electrochromic devices (ECDs) were prepared on flexible substrates using spray coating and slot‐die coating methods. The electrochromic materials were the conjugated electroactive polymers, poly((2,2‐bis(2‐ethylhexyloxymethyl)‐propylene‐1,3‐dioxy)‐3,4‐thiophene‐2,5‐diyl) as a vibrantly colored active material (ECP‐Magenta) and poly(N‐octadecyl‐(propylene‐1,3‐dioxy)‐3,4‐pyrrole‐2,5‐diyl) as a minimally colored, charge balancing material (MCCP). Two electrolyte systems were compared to allow development of fully printable and laminated devices on flexible substrates. Devices of various sizes, up to 7 × 8 cm2, are demonstrated with pixelated devices containing pixel sizes of 4 × 4 mm2 or 13 × 13 mm2. The transmission contrast exhibited by the devices, when switched between the fully bleached and fully colored state, was 58% at a visible wavelength of 550 nm, and the devices exhibited switching times of <10 s. Additionally, we demonstrate the utilization of printed organic photovoltaic devices (with or without the use of a lithium‐polymer battery) to power the devices between the colored and bleached state, illustrating a self‐powered ECD. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

12.
1,4-Bis(2-(3,4-ethylenedioxy)thienyl)benzene, prepared by Stille cross-coupling reaction was successfully electrochemically polymerized to give polymer 1,4-bis(2-(3,4-ethylenedioxy)thienyl)benzene (PEBE). Characterizations of the resulting polymer PEBE were performed by cyclic voltammetry (CV), UV–vis, Fourier transform infrared spectroscopy and scanning electron microscopy. Moreover, the spectroelectrochemical and electrochromic properties of the polymer film were investigated. The resulting polymer film has distinct electrochromic properties and shows three different colors (deep red, gray, and light blue) under various potentials. At the dedoped state of the polymer, the ππ* transition absorption peak is located at 510?nm and the optical band gap (E g) was calculated as 1.92?eV. The PEBE film shows a maximum optical contrast (ΔT%) of 31.0?% at 500?nm with a response time of 0.85?s. The coloration efficiency of PEBE film was calculated to be 182.2?cm2C?1. An electrochromic device (ECD) based on PEBE and poly(3,4-ethylenedioxythiophene) was also constructed and characterized. The response time was measured as 0.4?s, and the coloration efficiency of the device was calculated to be 225.4?cm2C?1. Furthermore, this ECD exhibited satisfactory optical memories and redox stability.  相似文献   

13.
The synthesis, one‐ and two‐photon absorption (TPA) and emission properties of two novel 2,6‐anthracenevinylene‐based copolymers, poly[9,10‐bis(3,4‐bis(2‐ethylhexyloxy)phenyl)‐2,6‐anthracenevinylene‐alt‐N‐octyl‐3,6‐carbazolevinyl‐ene] ( P1 ) and poly[9,10‐bis(3,4‐bis(2‐ethylhexyloxy)phenyl)‐2,6‐anthracenevinyl‐ene‐alt‐N‐octyl‐2,7‐carbazolevinylene] ( P2 ) were reported. The as‐synthesized polymers have the number‐average molecular weights of 1.56 × 104 for P1 and 1.85 × 104 g mol?1 for P2 and are readily soluble in common organic solvents. They emit strong bluish‐green one‐ and two‐photon excitation fluorescence in dilute toluene solution (? P1 = 0.85, ? P2 = 0.78, λem( P1 ) = 491 nm, λem( P2 ) = 483 nm). The maximal TPA cross‐sections of P1 and P2 measured by the two‐photon‐induced fluorescence method using femtosecond laser pulses in toluene are 840 and 490 GM per repeating unit, respectively, which are obviously larger than that (210 GM) of poly[9,10‐bis‐(3,4‐bis(2‐ethylhexyloxy) phenyl)‐2,6‐anthracenevinylene], indicating that the poly(2,6‐anthracenevinylene) derivatives with large TPA cross‐sections can be obtained by inserting electron‐donating moieties into the polymer backbone. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 463–470, 2010  相似文献   

14.
2‐((2,3‐Dihydrothieno[3,4‐b]dioxin‐2‐yl)methoxy)methyl oxirane (EDOT‐MO) was successfully synthesized by the reaction of epichlorohydrin with hydroxymethylated‐3,4‐ethylenedioxylthiophene (EDOT‐MeOH), which was synthesized via a simple four‐step sequence. Poly(hydroxymethylated‐3,4‐ethylenedioxylthiophene) (PEDOT‐MeOH) and poly(2‐((2,3‐dihydrothieno[3,4‐b]dioxin‐2‐yl)methoxy)methyl oxirane) (PEDOT‐MO) were electrosynthesized through electropolymerization of EDOT‐MeOH and EDOT‐MO, respectively. Structural, electrochemical, optical, and thermal properties of as‐formed polymers were investigated by FTIR, cyclic voltammetry, UV–vis, and thermogravimetry. Spectroelectrochemistry studies demonstrated that PEDOT‐MeOH and PEDOT‐MO could be reversibly oxidized and reduced accompany with obvious color changes. Further kinetic studies demonstrated that the introduction of hydroxymethyl or ethylene oxide group significantly improved electrochromic properties of 3,4‐ethylenedioxythiophene (PEDOT) and resulted in high contrast ratios (57.3% at 585 nm) and coloration efficiencies (338.5 cm2 C?1), low switching voltages, and fast response time. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1989–1999  相似文献   

15.
A series of near‐infrared (NIR) electrochromic aromatic poly(aryl ether)s containing N,N,N′,N′‐tetraphenyl‐p‐phenylenediamine (TPPA) moieties in the backbone were prepared from the high‐temperature polycondensation reactions of a biphenol monomer, 2,5‐bis(diphenylamino)hydroquinone, with difluoro compounds. The obtained polymers were readily soluble in many organic solvents and showed useful levels of thermal stability associated with high glass‐transition temperatures (182–205 °C) and high char yields (higher than 40% at 800 °C in nitrogen). The polymer films showed reversible electrochemical oxidation with high contrast ratio both in the visible range and NIR region, and also exhibited high coloration efficiency (CE), low switching time, and stability for electrochromic operation. The polyether TPPA‐a thin film revealed good CE in visible (CE = 217 cm2/C) and NIR (CE = 192 cm2/C) region with reversible electroactive stability (over 500 times within 5% loss relative to its initial injected charge). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5378–5385, 2009  相似文献   

16.
A novel electrochromic material, poly(indole-6-carboxylic acid) (PIn), and its application in electrochromic devices (ECDs) are discussed. PIn was switched between yellow in the reduced state and green in the oxidized state. Electrochromic switching of PIn film shows that it has fast switching time and high optical contrast. ECD based on PIn and poly(3,4-ethylenedioxythiophene) (PEDOT) was also fabricated and characterized. The response time of this device was found to be 1.0 s and the optical contrast was 45%. The coloration efficiency (CE) was calculated to be 510 cm2 C?1. Clear change from green (neutral) to blue-violet color (oxidized) of ECD is demonstrated with robust cycle life. These results provide an avenue for applications of polyindole family in electrochromic devices.  相似文献   

17.
A novel triphenylamine (TPA)‐containing bis(ether anhydride) monomer, namely 4,4′‐bis(3,4‐dicarboxyphenoxy)triphenylamine dianhydride, was synthesized and reacted with various aromatic diamines leading to a series of new poly(ether‐imide)s (PEI). Most of these PEIs were soluble in organic solvents and could be easily solution cast into flexible and strong films. The polymer films exhibited good thermal stability with glass‐transition temperatures in the range 211–299 °C. The polymer films exhibited reversible electrochemical processes and stable color changes (from transparent to navy blue) with high coloration efficiency and contrast ratio upon electro‐oxidation. During the electrochemical oxidation process, a crosslinked polymer structure was developed due to the coupling reaction between the TPA radical cation moieties in the polymer chains. These polymers can be used to fabricate electrochromic devices with high coloration efficiency, high redox stability, and fast response time. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 825–838  相似文献   

18.
Donor–acceptor type polymers bearing diketopyrrolopyrrole and 3,4‐ethylenedioxythiophene units are reported. The polymers are green and exhibit very low band‐gaps (1.19 eV) with strong and broad absorption (maxima of about 830 nm) in the near infrared (NIR) region in their neutral film states. The polymers display color changes between dark green and light blue with exceptional optical contrasts in the NIR regions of up to 78 and 63% as thin films and single‐layer electrochromic devices, respectively. Fast switching, good stabilities as well as high coloration efficiencies (743–901 cm2 C?1) were also observed. The polymers could also be potentially used as photovoltaic material, with a power conversion efficiency of up to 1.68%. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1287–1295  相似文献   

19.
In this work, the asymmetrical analog of 3,4‐ethylenedioxythiophene (EDOT), thieno[3,4‐b]‐1,4‐oxathiane (EOTT), was synthesized and chemically polymerized first in aqueous solution using poly(styrene sulfonic sodium) (PSS) as the polyelectrolyte to yield poly(thieno[3,4‐b]‐1,4‐oxathiane) (PEOTT)/PSS. As‐formed film exhibited low electrical conductivity (~10?4 S/cm). Alternatively, EOTT together with EDOT (in different molar ratio of 1:1 and 1:5) was copolymerized and the polymer poly(EOTT‐co‐EDOT)/PSS had electrical conductivity of 10?1 S/cm. After dimethyl sulfoxide (DMSO) treatment, the electrical conductivity was enhanced to 100 S/cm; however, the conductivity of the above homopolymer was reduced (~10?5 S/cm). Raman spectroscopy was used to interpret conductivity enhancement or reduction after DMSO treatment. The conductivity decrease of PEOTT/PSS compared to poly(EOTT‐co‐EDOT)/PSS may arise from the conformational change of PEOTT backbone from the quasi‐planar to the distorted planar mode induced by PSS/PSSH through ionic interaction. Kinetic studies revealed that the copolymer had high coloration efficiencies (375 cm2/C), low switching voltages (?0.8 to +0.6 V), decent contrast ratios (45%), moderate response time (1.0 s), excellent stability, and color persistence. An electrochromic device employing poly(3‐methylthiophene) and poly(EOTT‐co‐EDOT)/PSS as the anode and cathode materials was also studied. From these results, poly(EOTT‐co‐EDOT)/PSS would be a promising candidate material for organic electronics. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2285–2297  相似文献   

20.
A series of three new 1‐(2,6‐diisopropylphenyl)‐2,5‐di(2‐thienyl)pyrrole‐based polymers such as poly[1‐(2,6‐diisopropylphenyl)‐2,5‐di(2‐thienyl)pyrrole] ( PTPT ), poly[1,4‐(2,5‐bis(octyloxy)phenylene)‐alt‐5,5'‐(1‐(2,6‐diisopropylphenyl)‐2,5‐di(2‐thienyl)pyrrole)] ( PPTPT ), and poly[2,5‐(3‐octylthiophene)‐alt‐5,5'‐(1‐(2,6‐diisopropylphenyl)‐2,5‐di(2‐thienyl)pyrrole)] ( PTTPT ) were synthesized and characterized. The new polymers were readily soluble in common organic solvents and the thermogravimetric analysis showed that the three polymers are thermally stable with the 5% degradation temperature >379 °C. The absorption maxima of the polymers were 478, 483, and 485 nm in thin film and the optical band gaps calculated from the onset wavelength of the optical absorption were 2.15, 2.20, and 2.13 eV, respectively. Each of the polymers was investigated as an electron donor blending with PC70BM as an electron acceptor in bulk heterojunction (BHJ) solar cells. BHJ solar cells were fabricated in ITO/PEDOT:PSS/polymer:PC70BM/TiOx/Al configurations. The BHJ solar cell with PPTPT :PC70BM (1:5 wt %) showed the power conversion efficiency (PCE) of 1.35% (Jsc = 7.41 mA/cm2, Voc = 0.56 V, FF = 33%), measured using AM 1.5G solar simulator at 100 mW/cm2 light illumination. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号