首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 62 毫秒
1.
圆锥透镜对球面入射光的聚焦衍射特性   总被引:5,自引:2,他引:3  
刘华  卢振武 《光子学报》2005,34(1):126-128
首次导出了圆锥透镜对球面入射波的聚焦衍射计算公式,分析了其轴上能量分布与横向场能量分布特性. 数值计算结果表明,选择合适的球面入射波可以扩展焦深,改善光强分布,同时保证横向场能量分布要求. 对于半径20 mm,锥角θ=1×10-2的圆锥透镜,采用曲率半径为1200~1400 mm的球面入射波,可扩展焦深200 mm到120 mm,光强的均匀性有明显改善,横向场能量分布形状改变量不超过15 μm,完全达到应用要求.  相似文献   

2.
翟中生  赵斌 《光学学报》2007,27(8):1503-1507
分析了两束无衍射光的干涉场分布形式和干涉条纹轨迹。将一束单色光入射两小孔产生的两束相干光照射轴锥镜,在轴锥镜后将产生两束无衍射光。根据单束倾斜光入射轴锥镜的无衍射理论,分析出这两束无衍射光产生的干涉场为每束无衍射光的无衍射场的线性叠加。利用零阶贝塞尔函数的零点公式,推导出两束无衍射光的干涉条纹的轨迹为双曲线。计算结果表明,干涉场中两中心的间距与两孔实际的间距和干涉场距轴锥镜的距离成正比。实验结果与理论仿真相一致。  相似文献   

3.
王中宇  王倩  孟浩  王雪 《应用光学》2011,32(5):909-912
 激光三角法是表面形貌非接触测量中的一种常用方法,在几何测量领域应用广泛。传统的激光三角法采用高斯光束作为指示光源,在机械扫描机构的配合下,通过对被测表面逐点扫描完成表面形貌的测量。采用新型的无衍射光替代传统激光光源,解决了普通高斯光束存在的“焦深”问题,简化了机械结构。并采用基于灰色系统理论的灰色滤波进行表面形貌的分离与评定,克服了原有方法对测量数据样本量和统计特性的依赖,并通过实验表明该系统能够准确地完成表面形貌的三维测量,所提出的灰色评定方法能够比较有效地进行表面形貌的分离与评定。  相似文献   

4.
衍射理论对局域空心光束及无衍射光束重建的描述   总被引:13,自引:5,他引:8  
刘岚  吴逢铁 《光学学报》2008,28(2):370-374
利用衍射理论导出了局域空心光束的传输表达式及光强分布,给出了局域空心光束的精细结构,详细分析了其演变过程。讨论了聚焦透镜的焦距f对径向暗域最大尺寸及轴上暗域长度的影响。结果表明,径向暗域最大尺寸及轴上暗域长度都随着f的增大而增大。通过轴棱锥-透镜系统获得局域空心光束,用体视显微镜和CCD照相机组成的系统拍摄光束强度分布。结果表明应用衍射理论可以较精确地描述局域空心光束的演变过程。找出了其应用中的不利因素,更清晰地展现无衍射光束的重建现象。这种描述方法弥补了几何理论和干涉理论的不足。  相似文献   

5.
圆孔受限波差高斯光束的远场近似及发散度分析   总被引:4,自引:0,他引:4  
引入复高斯函数对衍射受限的圆孔进行了复高斯分解,得到了波差高斯光束远场衍射的近似解析式。在各种参量条件下,近似解析式所表示的衍射图样与严格的夫琅和费衍射积分的衍射图样完全一致,这表明用此解析式表征远场衍射是正确的。它的形式相对简单,为计算带来极大的方便。基于此,对有波差的高斯光束的远场发散度进行了深入的研究,检验了确定参量的光束随距离的改变而发散度不被改变的特性;同时,探讨了在圆孔限制下,发散度随高斯光束的束腰及波差的改变而变化的关系曲线,结果表明,这两个参量是影响发散度的主要因素。  相似文献   

6.
变折射率组合三角棱镜产生无衍射线结构光   总被引:1,自引:0,他引:1  
吴志伟 《光学学报》2012,32(5):523005-240
提出一种可产生大焦深无衍射线结构光的新型光学元件——变折射率组合三角棱镜,由正、负等腰三角棱镜胶合在一起设计而成,其变换光束特性与单个正等腰三角棱镜相同,等效折射率由正、负等腰三角棱镜折射率之差决定,因此可通过两个折射率接近的正、负等腰三角棱镜组合得到一个更加接近1的等效折射率,以获得更大焦深的无衍射线结构光,解决了单个正等腰三角棱镜小角度加工困难的技术问题。采用几何光学理论分析了产生无衍射线结构光的原理,计算了无衍射线结构光的相关参数。由衍射积分理论分析和模拟了新型光学元件后的光强分布特性。研究表明,平面波正面入射新型光学元件可以产生具有大焦深的无衍射线结构光。  相似文献   

7.
轴棱锥-透镜系统产生局域空心光束中心亮斑的消除   总被引:1,自引:0,他引:1       下载免费PDF全文
张前安  吴逢铁  郑维涛 《物理学报》2012,61(3):34205-034205
本文提出利用相位调制的新方法, 在光路中插入螺旋相位板, 使句域空心光束(Bottle beam)中心变为相位奇点, 在使用轴棱锥-透镜系统产生局域空心光束(Bottle beam)时, 消除了衍射等因素导致Bottle beam内部的轴上光强, 这利于用Bottle beam构建空心光镊系统. 理论分析及数值模拟与实验结果很好地吻合.  相似文献   

8.
为了满足HIRFL-CSR对注入器SFC的束流强度和品种的越来越高的要求, 兰州重离子加速器国家实验室在研制超导ECR离子源的同时, 设计了一个新的SFC的轴向注入束流线. 这个系统可以分别使用现有的常规ECR离子源和新建造的超导ECR离子源, 期望把从C到U的各种离子的能量和束流强度提高到一个新的水平. 这个系统由二极磁铁, 四极透镜, GLASSER透镜, 螺线管, 螺旋形静电偏转器和两台丝网型线性聚束器组成. 在总结现有系统运行经验的基础上,无论在横向还是纵向, 其性能结构都做了必要的改进. 文章给出了新系统的设计思想, 系统的布局结构和束流光学计算结果, 并对进一步提高聚束效率和聚束器的改进设计作了简要的描述. 目前, 系统正在安装中.  相似文献   

9.
孔径光阑限制下高斯光束的传输   总被引:8,自引:3,他引:5  
对高斯光束在硬边孔径限制下的衍射进行了详细的理论研究,就不同口径的圆孔限制下高斯光束在菲涅耳衍射区和夫琅禾费衍射区的分布进行了理论分析,从而得到了孔径受限高斯光束的横向以及轴向的衍射公式,进而对高斯光束在不同衍射区域内衍射光场分布形状随孔径尺寸变化时的演化规律进行了数值计算,并对小口径光阑受限的高斯光束的衍射与平行光经同尺寸光阑的衍射进行了比较。结果表明在较小口径下,两者的分布基本一致。得到的孔径光阑限制下高斯光束的传输规律为高斯光束在自由空间光通信和光学超分辨中的应用提供了理论基础。  相似文献   

10.
非柯尔莫哥洛夫湍流光束漂移的理论研究   总被引:1,自引:0,他引:1  
都文和  谭立英  马晶 《光学学报》2008,28(s2):20-23
一直以来, 大气湍流对空间光通信影响的研究都是在柯尔莫哥洛夫(Kolmogolov)湍流理论的框架内进行, 该模型已经被人们广泛接受和使用。然而, 近年来国内外众多非柯尔莫哥洛夫(Non-Kolmogolov)湍流的实验报道则表明Kolmogolov湍流理论有时不能完全正确地描述大气湍流的统计规律, 尤其在对流顶层和平流层。为了全面了解大气湍流对空间光通信的影响, 研究Non-Kolmogolov湍流对光波传输的影响成为了首先要面对的问题。基于Non-Kolmogolov湍流功率谱密度, 运用几何光学近似方法推导了弱起伏条件下准直光束和聚焦光束的光束漂移方差, 并给出了简洁的解析表达式; 然后, 利用这一表达式进行了仿真分析。  相似文献   

11.
透射型光折变体全息光栅对超短脉冲激光光束衍射的特性   总被引:4,自引:3,他引:4  
在Kogelnik耦合波理论的基础上,考虑光栅记录介质的色散效应的影响,研究了光折变体全息光栅对不同偏振状态的超短脉冲激光光束衍射的性质,讨论了高斯型入射脉冲激光光束的谱宽与光栅的有效衍射谱宽之比不同时,衍射和透射光束的光谱宽度、时间宽度、波形和衍射效率的变化。结果表明,光栅的有效衍射谱宽受光栅参量及入射条件的影响,对衍射性质的影响很大,且在考虑光栅记录介质的色散效应时减小。当入射脉冲的偏振方向垂直于入射面时,光栅的有效衍射谱宽大于偏振方向平行于入射面的情形,衍射效率在入射脉冲宽度较大时小于偏振方向平行于入射面的情形;谱宽比较大时,衍射光束的时间分布曲线产生展宽和变形,且比偏振方向平行于入射面的情形展宽和变形得更加明显。  相似文献   

12.
谢晓霞  李冬  吴逢铁 《光学学报》2015,35(1):126001
基于菲涅耳衍射理论,硬边孔径的复高斯函数展开法及稳相法研究了椭圆孔径与轴棱锥系统的光束传输特性,推导出了高斯平面波经轴棱锥衍射后产生的无衍射光场的表达式,数值模拟了不同传播距离处的截面光强分布,并设计了实验进行验证。用电荷耦合器件(CCD)拍摄得到不同传播距离处的光强分布。实验和模拟结果均表明平面波经椭圆孔径和轴棱锥系统后可获得具有马丢光束特征的带状无衍射光束。研究结果对无衍射光束在光学无损检测、条码扫描等应用上具有重要的指导作用。  相似文献   

13.
利用角谱分析和傅里叶变换的方法,得到一种描述几个周期的等束腰宽度脉冲光束传输的脉冲修正方法。以准单色光束传输的结果为出发点,通过对准单色光束的解进行泰勒级数展开,得到了一种相对简单的修正方法,可以精确的描述具有任意时间波形和横向光束分布的不短于一个周期的超短脉冲光束的传输行为。给出等束腰宽度超短脉冲的近似解,具体研究高斯脉冲光束的传输特性,分析几种不同的频谱对脉冲光束传输行为的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号