首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The structures, luminescent and magnetic properties of three series of coordination polymers with formulas-{[Fe(3)Ln(2)(L(1))(6)(H(2)O)(6)]·xH(2)O}(n) (Ln = Pr-Er; 1-9), {[Co(3)Ln(2)(L(1))(6)(H(2)O)(6)]·yH(2)O}(n) (Ln = Pr-Dy, Yb; 10-17) and {[Co(2)Ln(L(2))(HL(2))(2)(H(2)O)(7)]·zH(2)O}(n) (Ln = Eu-Yb; 18-25) (H(2)L(1) = pyridine-2,6-dicarboxylic acid, H(3)L(2) = 4-hydroxyl-pyridine-2,6-dicarboxylic acid) were systematically explored in this contribution. [Fe(II)(HS)-L(1)-Ln(III)] (1-9) and [Co(II)-L(1)-Ln(III)] (10-17) series are isostructural, and display 3D porous networks with 1D nanosized channels constructed by Fe/Co-OCO-Ln linkages. Furthermore, two types of "water" pipes are observed in 1D channels. [Co(II)-L(2)-Ln(III)] (18-25) series exhibit 2D open frameworks based on double-stranded helical motifs, which are further assembled into 3D porous structures by intermolecular hydrogen bonds between hydroxyl groups. The variety of the resulting structures is mainly due to the HO-substitution effect. These 3D coordination polymers show considerably high thermal stability, and do not decomposed until 400 °C. The high-spin Fe(II) ion in [Fe(II)(HS)-L(1)-Ln(III)] was confirmed by X-ray photoelectron spectroscopy, M?ssbauer spectroscopy and magnetic studies. The luminescent spectra of coordination polymers associated with Sm(III), Eu(III), Tb(III) and Dy(III) were systematically investigated, and indicate that different d-metal ions in d-f systems may result in dissimilar luminescent properties. The magnetic properties of [Fe(II)(HS)-L(1)-Ln(III)] (3, 6, 7, 9, 13), [Co(II)-L(1)-Ln(III)] (15-17) and [Co(II)-L(2)-Ln(III)] (19-24) coordination polymers were also studied, and the χ(M)T values decrease with cooling. For the single ion behavior of Co(II) and Ln(III) ions, the magnetic coupling nature between Fe(II)(HS)/Co(II) and Ln(III) ions cannot be clearly depicted as antiferromagnetic coupling.  相似文献   

2.
Polymeric networks, {[Co(dpyo)(ox)]}(n) (1), {[Co(dpyo)(fum)(H(2)O)(2)]}(n) (1) and {[Co(dpyo)(tp)(H(2)O)(2)] x [Co(H(2)O)(6)] x (tp) x (H(2)O)}(n) (3) [ox = oxalate dianion, fum = fumarate dianion, tp = terephthalate dianion and dpyo = 4,4'-dipyridyl N,N'-dioxide] have been synthesized and characterized by single crystal X-ray diffraction analyses. The structural determination reveals 1 and 2 are covalent bonded 2D networks of 4,4 topology and of these, complex 2 undergoes a H-bonding scheme resulting in a 3D supramolecular architecture. Complex 3 is a 1D coordination polymer built up by almost collinear hexacoordinated Co(ii), doubly bridged by a tp carboxylate group and a dpyo oxygen, which in combination with lattice [Co(H(2)O)(6)](2+), tp and water molecules shows an unprecedented 3D supramolecular network through H-bonding. In the polymer the dpyo shows novel mu-4,4 bridging mode towards the cobalt ion. Low temperature magnetic interaction reveals antiferromagnetic coupling in all of the complexes.  相似文献   

3.
Cao ML  Hao HG  Zhang WX  Ye BH 《Inorganic chemistry》2008,47(18):8126-8133
Two new complexes [Co(H2O)6 Co8(L1)12]X6 x n H2O (X = NO3(-), n = 12 (1); X = HCO3-, n = 24, (2); HL1 = 4,6-bis(2-pyridyl)-1,3,5-triazin-2-ol) have been synthesized and characterized by single-crystal X-ray diffraction. A [Co(H2O)6](2+) ion is encapsuled in the central cavity of the cubelike nanocage [Co(H2O)6 Co8(L1)12](6+) cation, assembled by eight cobalt ions at the corners and twelve bis-bidentate ligands L1 as the edges, via the formation of 12-fold strong hydrogen bonds between the six coordinated water molecules and the oxygen atoms of twelve L1 as a guest. Complex 1 crystallizes in a centrosymmetric space group P1, while 2 is in a very high symmetric space group Im3. In 2, a planar [(HCO3)2](2-) dimer motif R2(2)(8) synthon plus six lattice water molecules constitute a planar supramolecular synthon R8(8)(20), which acts as a four connector, generating a 3D hydrogen-bonded NbO net with cubelike host cavities of approximately 20 A diameter. Interestingly, the cubelike nanocage [Co(H2O)6 Co8(L1)12](6+) cations fill in the cavities as templates. The magnetic properties of 1 have also been studied in the temperature range of 2-300 K, and its magnetic susceptibility obeys the Curie-Weiss law, showing antiferromagnetic coupling.  相似文献   

4.
The reaction between Co(NO3)2.6H2O and substituted pyridylcarboxylic acid [nicotinic acid (Hnic) or trans-3-pyridylacrylic acid (Htpa)] in the presence of NaN3 under hydrothermal conditions yielded [Co(1.5)(nic)2 (Hnic)(N3)]n (1) and [Co(1.5)(tpa)2 (N3)(H2O)]n (2), respectively. Single crystal structure analyses reveal that both complexes are 3D complicated coordination polymers. The basic repeating units in both of the complexes are Co(3) trinuclear clusters containing syn-syn bridging carboxylate and end-on azido linker. A similar reaction using MnCl2.4H2O in presence of equimolar amounts of Htpa and NaN3 yielded a 2D corrugated sheet [Mn(tpa)2]n (3) containing no azide. Complex 3 can also be synthesized under hydrothermal conditions using Natpa in the absence of NaN3. Surprisingly, the same reaction at room temperature yielded a known mononuclear complex [Mn(tpa)2(H2O)4]. Variable temperature magnetic studies down to 2 K revealed the dominant antiferromagnetic nature of the first two complexes with a ferrimagnetic type of behavior despite the facts that they are homometallic and homospin systems. The susceptibility data in both cases were analyzed by a Co3 trinuclear model as well as considering inter-trimer interactions. Complex 3 is weakly antiferromagnetic in nature with an exchange parameter of J = -2 cm(-1) through the syn-anti bridging carboxylate pathway.  相似文献   

5.
Pan Z  Zheng H  Wang T  Song Y  Li Y  Guo Z  Batten SR 《Inorganic chemistry》2008,47(20):9528-9536
Four new compounds of partially or wholly deprotonated 5,5'-(1,4-phenylenebis(methylene))bis(oxy)diisophthalic acid (H4L1) and 5,5'-(1,3-phenylenebis(methylene))bis(oxy)diisophthalic acid (H4L2), namely {[Co(L1)0.5] x (H2O)2}n (1), {[Mn(L1)0.5] x (H2O)2}n (2), {[Cu(H2L1)](mu2-bipy)}n (bipy = 4, 4'-bipyridyl) (3), and {[Zn2(L2)] x H2O}n (4) were synthesized in the presence or absence of auxiliary bipy ligand. Their structures have been determined by single-crystal X-ray diffraction analysis and further characterized by elemental analysis, IR spectra, and thermogravimetric analysis. Compounds 1 and 2 are isostructural and possess three-dimensional (3D) networks. In compound 3, multicarboxylate ligands and bipy ligands link Cu centers to generate a two-dimensional (2D) sheet structure which is further connected by intermolecular hydrogen bonds to form a 3D supramolecular structure. In compound 4, the Zn centers are connected by L2(4-) anions to generate a 3D framework. Magnetic susceptibility measurements indicate that compounds 1 and 2 exhibit antiferromagnetic coupling between adjacent Co(II) ions and Mn(II) ions. The photoluminescent properties of the free 4L1 and H4L2 ligands and compound 4 have been studied in the solid state at room temperature. Both ligands and compound 4 exhibit strong violet emissions. Compared with the fluorescent emission of the ligand, the emission of 4 is red-shifted and enhanced.  相似文献   

6.
The reactions of manganese(II) acetate or perchlorate, sodium azide or sodium cyanate, and the zwitterionic dicarboxylate ligand 1,4-bis(4-carboxylatopyridinium-1-methylene)benzene (L) under different conditions yielded three different Mn(II) coordination polymers with mixed carboxylate and azide (or cyanate) bridges: {[Mn (L(1))(0.5)(N(3))(OAc)]·3H(2)O}(n) (1), {[Mn(4)(L(1))(N(3))(8)(H(2)O)(4)(CH(3)OH)(2)]·[L(1)]}(n) (2), and {[Mn(3)(L(1))(NCO)(6)(H(2)O)(4)]·[L(1)]·[H(2)O](2)}(n) (3). The compounds exhibit diverse structures and magnetic properties. In 1, the 1D uniform anionic [Mn(N(3))(COO)(2)](n) chains with the (μ-EO-N(3))(μ-COO)(2) triple bridges (EO = end-on) are interlinked by the dipyridinium L ligands into highly undulated 2D layers. Magnetic studies on 1 reveal that the mixed triple bridges induce antiferromagnetic coupling between Mn(II) ions. Compounds 2 and 3 consist of 1D neutral polymeric chains and co-crystallized zwitterions, and the chains are formed by the L ligands interlinking linear polynuclear units. The polynuclear unit in 2 is tetranuclear with (μ-EO-N(3))(2) as central bridges and (μ-EO-N(3))(2)(μ-COO) as peripheral bridges, while that in 3 is trinuclear with (μ-NCO)(2)(μ-COO) bridges. Magnetic studies demonstrate that the magnetic coupling through the mixed azide/isocyanate and carboxylate bridges in 2 and 3 is antiferromagnetic. An expression of magnetic susceptibility based on a 2-J model for linear tetranuclear systems of classical spins has been deduced and applied to 2.  相似文献   

7.
The new copper(II) or copper(II)/sodium(I) 1D coordination polymers [Cu2(Hmdea)2(mu-H2O)(mu2-tpa)]n.2nH2O (1), [Cu2(H2tipa)2(mu2-ipa)]n.4nH2O (2), [Cu2(H2tea)2Na(H2O)2(mu2-tma)]n.6nH2O (3), [Cu2(H2tea)2(mu2-ipa)]n.nH2O (4a), and [Cu2(H2tea)2{mu3-Na(H2O)3}(mu3-ipa)]n(NO3)n.0.5nH2O (4b) have been prepared in aqueous medium by self-assembly from copper(II) nitrate, aminopolyalcohols [methyldiethanolamine (H2mdea), triisopropanolamine (H3tipa), and triethanolamine (H3tea)] as main chelating ligands and benzenepolycarboxylic acids [terephthalic (H2tpa), isophthalic (H2ipa), and trimesic (H3tma) acid] as spacers. They have been characterized by IR spectroscopy, elemental and single-crystal X-ray diffraction analyses, the latter indicating the formation of unusual multinuclear metal cores interconnected by various benzenepolycarboxylate spacers, leading to distinct wavelike, zigzag, or linear 1D polymeric metal-organic chains. These are further extended to 2D or 3D hydrogen-bonded supramolecular networks via extensive interactions with the intercalated crystallization water molecules. The latter are associated, also with aqua ligands, by hydrogen bonds resulting in acyclic (H2O)3 clusters in 1, (H2O)8 clusters in 2, infinite 1D water chains in 3, and disordered water-nitrate associates in 4b, all playing a key role in the structure stabilization and its extension to further dimensions. Variable-temperature magnetic susceptibility measurements have shown that 1-4 exhibit a moderately strong ferromagnetic coupling through the alkoxo bridge. The small Cu-O-Cu bridging angle and the large out-of-plane displacement of the carbon atom of the alkoxo group accounts for this behavior. The magnetic data have been analyzed by means of a dinuclear and a 1D chain model, and the magnetic parameters have been determined. The magnetic exchange coupling in 3, to our knowledge, is the highest found in alkoxo-bridged copper(II) complexes.  相似文献   

8.
Reported here is the preparation and property of 2D coordination networks composed of rodlike ligands with ethylene glycol side chains (1). Two 2D coordination networks, [[Co(1)2(H2O)2](NO3)2.1.5H2O]n and [[Ni(1)2(H(2)O)2](NO3)2.1.5H2O]n, have been synthesized and characterized by single-crystal X-ray diffraction, TG, DSC, UV-vis spectroscopy, and magnetic measurements. The structural analyses clarified that infinite 1D hydrogen-bond arrays composed of ethylene glycol chains contribute to the stabilization of 2D coordination frameworks, keeping the environment of substitution-active metal sites unchanged. They are more stable than a similar square-grid coordination network that does not possess an ethylene glycol chain on the ligand. We also succeeded in the direct observation of a reversible apical-ligand-exchange reaction at the cobalt(II) and nickel(II) ions in a single-crystal-to-single-crystal fashion because of the considerable stability as well as moderate flexibility of the framework. The cobalt-containing coordination network crystal showed chromic behavior depending on temperatures. Crystallographic and spectroscopic studies revealed that the color change of the crystal was attributed to the ligand-exchange process between H2O and a NO3 anion on the cobalt metal. Magnetic measurements indicated weak antiferromagnetic nearest-neighbor spin coupling between cobalt(II) ions.  相似文献   

9.
Zheng YQ  Lin JL  Xu W  Xie HZ  Sun J  Wang XW 《Inorganic chemistry》2008,47(22):10280-10287
Seven new glutaric acid complexes, Co(H 2O) 5L 1, Na 2[CoL 2] 2, Na 2[L(H 2L) 4/2] 3, {[Co 3(H 2O) 6L 2](HL) 2}.4H 2O 4, {[Co 3(H 2O) 6L 2](HL) 2}.10H 2O 5, {[Co 3(H 2O) 6L 2]L 2/2}.4H 2O 6, and Na 2{[Co 3(H 2O) 2]L 8/2].6H 2O 7 were obtained and characterized by single-crystal X-ray diffraction methods along with elemental analyses, IR spectroscopic and magnetic measurements (for 1 and 2). The [Co(H 2O) 5L] complex molecules in 1 are assembled into a three-dimensional supramolecular architecture based on intermolecular hydrogen bonds. Compound 2 consists of the Na (+) cations and the necklace-like glutarato doubly bridged [ C o L 4 / 2 ] 2 - infinity 1 anionic chains, and 3 is composed of the Na (+) cations and the anionic hydrogen bonded ladder-like [ L ( H 2 L ) 4 / 2 ] 2 - infinity 1 anionic chains. The trinuclear {[Co 3(H 2O) 6L 2](HL) 2} complex molecules with edge-shared linear trioctahedral [Co 3(H 2O) 6L 2] (2+) cluster cores in 4 and 5 are hydrogen bonded into two-dimensional (2D) networks. The edge-shared linear trioctahedral [Co 3(H 2O) 6L 2] (2+) cluster cores in 6 are bridged by glutarato ligands to generate one-dimensional (1D) chains, which are then assembled via interchain hydrogen bonds into 2D supramolecular networks. The corner-shared linear [Co 3O 16] trioctahedra in 7 are quaternate bridged by glutarato ligands to form 1D band-like anionic {[Co 3(H 2O) 2]L 8/2} (2+) chains, which are assembled via interchain hydrogen bonds into 2D layers, and between them are sandwiched the Na (+) cations. The magnetic behaviors of 1 and 2 obey the Curie-Weiss law with chi m = C/( T - Theta) with the Curie constant C = 3.012(8) cm (3) x mol (-1) x K and the Weiss constant Theta = -9.4(7) K for 1, as well as C = 2.40(1) cm (3) x mol (-1) x K and Theta = -2.10(5) K for 2, indicating weak antiferromagnetic interactions between the Co(II) ions.  相似文献   

10.
Pang Y  Cui S  Li B  Zhang J  Wang Y  Zhang H 《Inorganic chemistry》2008,47(22):10317-10324
Self-assembly of a tetradentate ligand, N, N'-bi(salicylidene)-2,6-pyridinediamine (H 2L), with Cu(II) or Co(II), affords a dinuclear [Cu 2L 2] complex ( 1) or a trinuclear [Co 3L 3] complex ( 2), which were characterized by the single crystal X-ray diffraction study. The coordination geometry of the Cu (II) centers in 1 is between square planar and tetrahedral, with the ligand adopting a cis-cis conformation to give a centrally symmetric structure, which can be regarded as a mesocate. However, the coordination geometry of Co (II) centers in 2 is distortedly tetrahedral, and the ligand adopts a cis-trans conformation. The whole complex of 2 is of a pseudo- C 3 symmatrical, torus-like structure, which can be regarded as a circular helicate. Both the mesocate and the helicate exhibit expanded supramolecular structures due to elaborate intercomplex pi-stacking interactions. These two complexes were also characterized by element analysis, IR spectra, and TGA. To verify the stability of 2, ESI-MS was carried out on both the crystal and the powdered samples. Variable temperature magnetic susceptibility measurements reveal that both 1 and 2 display antiferromagnetic properties. DFT calculations were carried out on 1 to verify the antiferromagnetic coupling between intracluster metal centers.  相似文献   

11.
Zhou HB  Wang J  Wang HS  Xu YL  Song XJ  Song Y  You XZ 《Inorganic chemistry》2011,50(15):6868-6877
On the basis of high-spin metal-cyanide clusters of Mn(III)(6)M(III) (M = Cr, Fe, Co), three one-dimensional (1D) chain complexes, [Mn(salen)](6)[Cr(CN)(6)](2)·6CH(3)OH·H(2)O (1), [Mn(5-CH(3))salen)](6)[Fe(CN)(6)](2)·2CH(3)CN·10H(2)O (2), and [Mn(5-CH(3))salen)](6)[Co(CN)(6)](2)·2CH(3)CN·10H(2)O (3) [salen = N,N'-ethylenebis(salicylideneiminato) dianion], have been synthesized and characterized structurally as well as magnetically. Complexes 2 and 3 are isomorphic but slightly different from complex 1. All three complexes contain a 1D chain structure which is comprised of alternating high-spin metal-cyanide clusters of [Mn(6)M](3+) and a bridging group [M(CN)(6)](3-) in the trans mode. Furthermore, the three complexes all exhibit extended 3D supramolecular networks originating from short intermolecular contacts. Magnetic investigation indicates that the coupling mechanisms are intrachain antiferromagnetic interactions for 1 and ferromagnetic interactions for 2, respectively. Complex 3 is a magnetic dilute system due to the diamagnetic nature of Co(III). Further magnetic investigations show that complexes 1 and 2 are dominated by the 3D antiferromagnetic ordering with T(N) = 7.2 K for 1 and 9.5 K for 2. It is worth noting that the weak frequency-dependent phenomenon of AC susceptibilities was observed in the low-temperature region in both 1 and 2, suggesting the presence of slow magnetic relaxations.  相似文献   

12.
Two new Co(II) coordination polymers with a pyridinedicarboxylate ligand, {[Co(L)(H(2)O)]·H(2)O}(n) (1) and [Co(3)(HCOO)(2)(L)(2)(H(2)O)(2)](n) (2) (H(2)L = 5-(pyridin-4-yl)isophthalic acid), have been synthesized and structurally characterized by elemental analysis, IR, XRPD, and single-crystal X-ray diffraction. Structure analyses show that complex 1 has a two-dimensional (2D) double-layered structure with a (3,6)-connected kgd topology based on [Co(2)O(2)] units, while complex 2 takes a three-dimensional (3D) structure with (3,6)-connected rtl topology network based on linear [Co(3)(HCOO)(2)(CO(2))(4)] clusters with triple carboxylate bridges. Magnetic investigation indicates that besides strong spin-orbit coupling of Co(II) ions, ferromagnetic and weak ferromagnetic exchange interactions between Co(II) ions in the Co(2) and Co(3) clusters exist in 1 and 2, respectively. The FC/ZFC magnetization behaviors for both of them suggest the absence of any long-range magnetic ordering.  相似文献   

13.
The first examples of polymeric complexes that contain the polynitrile dianion hexacyanotrimethylenecyclopropanediide (HCTMCP(2-)) were isolated and their magnetic properties have been explored. Complexes of the form (n-TBA)(2)[M(HCTMCP)(2)(H(2)O)(2)] (1) (M = Mn(II), Fe(II), Co(II), Cd(II)) possess (4,4) sheet structures with large cavities that contain the tetra-n-butylammonium (n-TBA) countercations. Synthesis using sodium as the countercation yields a family of products with the general form [M(S)(4)M(S)(2)(HCTMCP)(2)] (S = EtOH, M = Fe(II) (2); S = MeOH, M = Co(II) or Zn(II) (3)). These complexes adopt a variety of two-dimensional (2D) structures. The complex [Mn(3)(HCTMCP)(2)(H(2)O)(12)](HCTMCP)·6(H(2)O) (4) contains cationic (6,3) sheets with the counteranion and solvent molecules encapsulated within the hexagonal windows. Complexes 1-4 display weak antiferromagnetic coupling in all cases. The first example of a complex that contains the CN-coordinated monoanionic radical HCTMCP (?-), [Cu(HCTMCP)(MeCN)(2)] (5) is described. This one-dimensional (1D) coordination polymer, containing tetrahedral Cu(I) centers, displays medium strength antiferromagnetic coupling that is mediated through π-interactions between the radical anions on adjacent chains.  相似文献   

14.
A new tridentate Schiff base ligand HL (L = C14H19N2O), derived from the condensation of benzoylacetone and 2-dimethylaminoethylamine in a 1:1 ratio, reacts with copper(ii) acetate and cyanate, thiocyanate or azide, to give rise to several end-to-end polymeric complexes of formulae [CuL(mu(1,3)-NCO)]n 1, [CuL(mu(1,3)-NCS)]n 2 and the complex 3 has two crystallographically independent units of formula [CuL(N3)] in the asymmetric unit cell. Complex 3 exists in dimeric form rather than as a polymeric chain. Compound 1 is the first report of a singly end-to-end cyanate bridged polymeric chain of Cu(II) with a Schiff base as a co-ligand. There are many examples of double NCS bridged polymeric chains, but fewer singly bridged ones such as compound 2. We have characterized these complexes by analytical, spectroscopic, structural and variable temperature magnetic susceptibility measurements. The coordination geometry around the Cu(II) centers is distorted square pyramidal for 1 and 2 and square planar for complex 3. The magnetic susceptibility data show slight antiferromagnetic coupling for the polymers having J values -0.19 and -0.57 cm(-1) for complexes 1 and 2 respectively. The low values of J are consistent with the equatorial-axial disposition of the bridges in the polymers.  相似文献   

15.
Yin P  Gao S  Wang ZM  Yan CH  Zheng LM  Xin XQ 《Inorganic chemistry》2005,44(8):2761-2765
This paper reports the syntheses and characterization of four isomorphous compounds (NH(3)C(6)H(4)NH(3))M(2)(hedpH)(2).H(2)O [M = Fe (1), Co (2), Mn (3), Zn (4); hedp = C(CH(3))(OH)(PO(3))(2)]. Each contains two crystallographically different kinds of {M(2)(hedpH)(2)}(n) double chains, where the {M(2)(mu-O)(2)} dimer units are connected by O-P-O bridges. The double chains are connected through extensive hydrogen bonds, hence generating a three-dimensional supramolecular network. The temperature-dependent magnetic susceptibility measurements show dominant antiferromagnetic interactions in compounds 1-3, mediated through the mu-O and/or O-P-O bridges between the metal(II) centers. The magnetization measurements reveal that compounds 1-3 experience field-induced magnetic transitions at low temperatures.  相似文献   

16.
Six new coordination polymers, namely {[Zn(btec)(0.5)(btmb)]·2H(2)O}(n) (1), {[Co(btec)(0.5)(btmb)(H(2)O)]·3H(2)O}(n) (2), {[Cu(btec)(0.5)(btmb)]·H(2)O}(n) (3), {[Cu(4)(btc)(4)(btmb)(4)]·H(2)O}(n) (4), {[Co(3)(bta)(2)(btmb)(2)]·2H(2)O}(n) (5), [Co(Hbta)(btmb)](n) (6) (H(4)btec = 1,2,4,5-benzenetetracarboxylate, H(3)btc = 1,3,5-benzenetricarboxylate, H(3)bta = 1,2,4-benzenetricarboxylate and btmb = 4,4'-bis(1,2,4-triazol-1-ylmethyl)biphenyl), have been successfully synthesized under hydrothermal conditions. All these complexes were structurally determined by single-crystal X-ray diffraction, elemental analysis, IR, TGA and XRD. Crystal structural analysis reveals that 1 is the first example of an unusual 3D framework with (8(6)) topology containing a 2D molecular fabric structure. Complex 2 exhibits a 3D NbO network with (6(4)·8(2)) topology. In 3, Cu(II) ions are coordinated by anti-conformational btmb ligands to form left- and right-handed double helices, which are further bridged by the 4-connected btec(4-) anions to give a 3D porous network. Complex 4 presents a rare 3D gra network structure with (6(3))(6(9)·8) topology. 5 and 6 were obtained through controllable pH values of solution, 5 features a scarce binodal (3,8)-connected tfz-d framework with the trinuclear Co(II) clusters acting as nodes, whereas 6 has an extended 2D 4(4) grid-like layer and the adjacent 2D layers are interconnected by strong hydrogen bonding interactions into a 3D supramolecular framework. The structural diversities indicate that distinct organic acid ligands, the nature of metal ions and the pH value play crucial roles in modulating the formation of the resulting coordination complexes and the connectivity of the ultimate topological nets. Moreover, magnetic susceptibility measurement of 5 indicates the presence of weak ferromagnetic interactions between the Co(II) ions bridged by carboxylate groups.  相似文献   

17.
The reaction of nucleobases (adenine or purine) with a metallic salt in the presence of potassium oxalate in an aqueous solution yields one-dimensional complexes of formulas [M(mu-ox)(H(2)O)(pur)](n) (pur = purine, ox = oxalato ligand (2-); M = Cu(II) [1], Co(II) [2], and Zn(II) [3]), [Co(mu-ox)(H(2)O)(pur)(0.76)(ade)(0.24)](n)(4) and ([M(mu-ox)(H(2)O)(ade)].2(ade).(H(2)O))(n) (ade = adenine; M = Co(II) [5] and Zn(II) [6]). Their X-ray single-crystal structures, variable-temperature magnetic measurements, thermal behavior, and FT-IR spectroscopy are reported. The complexes 1-4 crystallize in the monoclinic space group P2(1)/a (No. 14) with similar crystallographic parameters. The compounds 5 and 6 are also isomorphous but crystallize in the triclinic space group P (No. 2). All compounds contain one-dimensional chains in which cis-[M(H(2)O)(L)](2+) units are bridged by bis-bidentate oxalato ligands with M(.)M intrachain distances in the range 5.23-5.57 A. In all cases, the metal atoms are six-coordinated by four oxalato oxygen atoms, one water molecule, and one nitrogen atom from a terminal nucleobase, building distorted octahedral MO(4)O(w)N surroundings. The purine ligand is bound to the metal atom through the most basic imidazole N9 atom in 1-4, whereas in 5 and 6 the minor groove site N3 of the adenine nucleobase is the donor atom. The crystal packing of compounds 5 and 6 shows the presence of uncoordinated adenine and water crystallization molecules. The cohesiveness of the supramolecular 3D structure of the compounds is achieved by means of an extensive network of noncovalent interactions (hydrogen bonds and pi-pi stacking interactions). Variable-temperature magnetic susceptibility measurements of the Cu(II) and Co(II) complexes in the range 2-300 K show the occurrence of antiferromagnetic intrachain interactions.  相似文献   

18.
By auxiliary N-donor ligand-directed assembled, two entangled Co(II)-coordination nets have been constructed from 3,3',5,5'-azobenzenetetracarboxylic acid (H(4)abtc), which present a rare 2D→3D polythreading motif constructed from 2-fold (6,3) polymeric layers with thickness being 10.2 ? and a 3-fold interpenetrating pillar-layered framework based on linear trinuclear Co(II)-SBUs. In addition, two Co(II)-complexes both show an antiferromagnetic coupling by long organic spacers and H(2)O bridges, respectively.  相似文献   

19.
Four new heterometallic glutarate coordination polymers, [Eu2M(H2O)4][O2C(CH2)3CO2]4.2H2O (M = Mn (1), Fe (2), Co (3) and Ni (4)) have been obtained under hydrothermal synthesis. The single-crystal X-ray diffraction analyses showed that they have two-dimensional frameworks based on the linear polyhedral chains consisting of two nine-coordinated Eu(III)O9 and a six-coordinated M(II)O6. These 1-D MO6-Eu2O16 chains are cross-linked by glutarate ligands as an interchain pillared architecture, whose conformations vary depending upon the transition metals. The magnetic behavior of the compounds show a weak antiferromagnetic interaction, in which shielding of the 4f electrons by the outer shell electrons effectively precludes significant coupling interactions between the Eu-4f electrons and transition metal (M)-3d electrons.  相似文献   

20.
The reaction of metal ions, flexible aliphatic dicarboxylates and rigid bidentate linear ligands under mild conditions in water afford four novel metal-organic coordination polymers, [Cd(mu-mal)(mu-pyz)(0.5)(H(2)O)](n) 1 (mal = malonate dianion, pyz = pyrazine), [Cd(2)(mu-suc)(2)(mu-pyz)(H(2)O)(2)](n) 2 (suc = succinate dianion), and ([M(mu-bipy)(H(2)O)4][suc].4H(2)O)(n)(M = Co, 3, M = Zn, 4, bipy = 4,4'-bipyridine). The molecular structures of 1-4 have been established by single-crystal X-ray crystallography. 1 is a 3D network being composed of layers of octahedrally coordinated Cd atoms bridged by malonate anions in syn-anti configurations within the layers and pyz molecules between layers. Unlike that in 1, each Cd atom in 2 displays uncommon pentagonal-bipyramidal geometry to form 2D infinite grid sheets with square grid dimensions of ca. 7.936 x 7.936 [Angstrom]. Both 3 and 4 exhibit 1D linear -M-bipy-M-bipy- chain polymers, and these chains were packed as ...ABCABC... layered structures. The bridging succinate ligands in 2 adopt the syn-anti mode with a torsion angle of 60.8(7) degrees, while the solvated succinate ligands in 3 and 4 adopt the anti-anti mode with a torsion angle of 180.0 degrees. To our knowledge, compound 2 represents the first example of flexible self-assembled succinate-pyrazine mixed bridging ligand coordination network. 3 and 4 are the first two cases of succinate-bipy polymers with non-coordinated succinate. The magnetic behavior for 3 was studied in the temperature range of 5-300 K. The result indicates the occurrence of a weak antiferromagnetic coupling between the cobalt(II) ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号