共查询到20条相似文献,搜索用时 10 毫秒
1.
Gas-phase theoretical prediction of the metal affinity of copper(I) ion for DNA and RNA bases 总被引:1,自引:0,他引:1
The most stable tautomeric forms of free DNA and RNA bases were considered as substrates for the interaction of Cu(+) ion. Several suitable attachment sites were selected that involved mono- and bi-coordination of the cation. B3LYP/6-311 + G(2df,2p) bond energies showed that copper ion has the major affinity for guanine and cytosine bases. The proposed values of Cu(+) ion affinity are 59.9, 60.0, 80.2, 88.0 and 69.0 kcal mol(-1) for uracil, thymine, cytosine, guanine and adenine, respectively. The preference for the mono- or bi-coordination depends on the particular tautomer for each base. 相似文献
2.
Protonated forms of the ferrocene, ruthenocene, and osmocene molecules in the gas phase were calculated using the density functional approach with the Becke—Lee—Young—Parr functional. The proton affinity energies of ferrocene, ruthenocene, and osmocene were estimated at 214.2, 220.3, and 229.7 kcal mol–1, respectively. The addition of a proton to carbon atoms of the cyclopentadienyl ring in the ferrocene molecule and to the metal atom in the ruthenocene and osmocene molecules is more energetically favorable. No minimum corresponding to ring protonation was located on the potential energy surface of protonated osmocene. The C—H
endo
bond in the ring-protonated [C10H11M]+ (M = Fe, Ru) cations is involved in agostic interaction with the metal atom. Transition states of interconversions between the ring-protonated and metal-protonated forms were identified. A specific group of protonated forms of the ferrocene and ruthenocene molecules includes four types of structures, viz., ring-protonated (1a,b) and metal-protonated (2a,b) structures, transition states of the 1 2 interconversion (3a,b), as well as ring-protonated structures with the cyclopentadiene ring folded along the C(2)—C(5) line so that the M—H
endo
interaction is virtually negligible. The latter structures are required for [1,5]-sigmatropic shift of the exo-hydrogen atom in the Cp ring to occur. The results obtained were used for the interpretation of the available schemes of electrophilic substitution reactions in metallocenes and of the sigmatropic shift mechanisms. 相似文献
3.
The interacting patterns and mechanism of the catechin and cytosine have been investigated using the density functional theory B3LYP method with 6-31+G* basis set.Eleven stable structures of the catechin-cytosine complexes have been found respectively.The results indicate that the complexes are mainly stabilized by the hydrogen bonding interactions.Theories of atoms in molecules(AIM) and natural bond orbital(NBO) have been utilized to investigate the hydrogen bonds involved in all the systems.The interactio... 相似文献
4.
采用密度泛函理论的B3LYP方法,在6-31+G*基组水平上研究了儿茶素-胞嘧啶分子间相互作用机制,得到稳定的儿茶素-胞嘧啶复合物11个.计算结果表明氢键对于复合物的稳定性起着重要的作用,并且当复合物形成2个或更多的氢键时,氢键的类型及强度共同决定着复合物的稳定性.我们还应用了分子中的原子(AIM)理论和自然键轨道(NBO)理论对这11种复合物中氢键的性质和特征进行了分析.通过研究发现,所有的氢键复合物进行基组重叠误差(BSSE)校正后的相互作用能为-17.35~-43.27kJ/mol,相互作用能主要由氢键所贡献.振动分析显示,氢键的形成使相对应键的对称伸缩振动频率减小,说明这些复合物中形成的氢键都是正常的红移型氢键,与实验结果相一致. 相似文献
5.
In this work, we report on a photoionization study of the microhydration of the four DNA bases. Gas-phase clusters of water with DNA bases [guanine (G), cytosine (C), adenine (A), and thymine (T)] are generated via thermal vaporization of the bases and expansion of the resultant vapor in a continuous supersonic jet expansion of water seeded in Ar. The resulting clusters are investigated by single-photon ionization with tunable vacuum-ultraviolet synchrotron radiation and mass analyzed using reflectron mass spectrometry. Photoionization efficiency (PIE) curves are recorded for the DNA bases and the following water (W) clusters: G, GWn (n = 1-3); C, CWn (n = 1-3); A, AWn (n = 1,2); and T, TWn (n = 1-3). Appearance energies (AE) are derived from the onset of these PIE curves (all energies in eV): G (8.1 +/- 0.1), GW (8.0 +/- 0.1), GW2 (8.0 +/- 0.1), and GW3 (8.0); C (8.65 +/- 0.05), CW (8.45 +/- 0.05), CW2 (8.4 +/- 0.1), and CW3 (8.3 +/- 0.1); A (8.30 +/- 0.05), AW (8.20 +/- 0.05), and AW2 (8.1 +/- 0.1); T (8.90 +/- 0.05); and TW (8.75 +/- 0.05), TW2 (8.6 +/- 0.1), and TW3 (8.6 +/- 0.1). The AEs of the DNA bases decrease slightly with the addition of water molecules (up to three) but do not converge to values found for photoinduced electron removal from DNA bases in solution. 相似文献
6.
胞嘧啶、尿嘧啶和胸腺嘧啶都有酮式和烯醇式互变异构。有人认为DNA的错配频率,与酮,烯醇或氨,亚氨的互变异构平衡有关。迄今,在相同理论水平上同时对三种嘧啶互变异构体进行理论计算研究的文献较少, 相似文献
7.
Results of ab initio self-consistent-field (SCF) and density functional theory (DFT) calculations of the gas-phase structure,acidity (free energy of deprotonation,G0) and aro-maticity of tetraselenosquaric acid (3,4-diselenyl-3-cy-dobutene-1,2-diselenone,H2C4Se4) are reported.The global minimum found on the potential energy surface of tetraselenosquaric acid presents a planar conformation.The ZZ iso-mer was found to have the lowest energy among the three planar conformers and the ZZ and ZE isomers are very dose in energy.The optimized geometric parameters exhibit a bond length equalization relative to reference compounds,cyclobu-tanediselenone,and cydobutenediselenol.The computed aromatic stabilization energy (ASE) by homodesmotic reaction is -77.4 (MP2(fu)/6 - 311 G //RHF/6 - 311 G) and - 54.8 kJ/mol (B3LYP/6 - 311 G //B3LYP/6 -311 G).The aromaticity of tetraselenosquaric add is indicated by the calculated diamagnetic susceptibility exaltation (A) - 19.13 (CSGT(IGAEM) - RHF/6 - 311 G// RHF/6- 相似文献
8.
Relative constants of acidity and basicity of nucleic acid bases (NABs) and their tautomeric forms are calculated. The general characteristic of the effect of an aqueous solvent on the tautomeric equilibrium of NABs is formulated. It is shown that during the tautomeric transformation of NABs their acid-base properties change to the opposite ones. One of possible causes of the formation of complementary pairs with rare tautomeric forms of NABs is considered. 相似文献
9.
Berruyer-Penaud F Bouchoux G Payen O Sablier M 《Journal of mass spectrometry : JMS》2004,39(6):613-620
The protonation energetics of lactic acid (LA) were experimentally determined by the kinetic method including the entropy effect. The values (proton affinity, PA(LA) = 817.4 +/- 4.3 kJ mol(-1); protonation entropy, DeltaS degrees (p)(LA) = -2 +/- 5 J K(-1) mol(-1); gas-phase basicity, GB(LA) = 784.5 +/- 4.5 kJ mol(-1)) agree satisfactorily with computed G2(MP2) expectations (PA(LA) = 811.8 kJ mol(-1); DeltaS degrees (p)(LA) = -7.1 J K(-1) mol(-1); GB(LA) = 777.4 kJ mol(-1)). The fragmentation behaviour of protonated lactic acid (LAH(+)) is dominated by carbon monoxide loss followed by elimination of a water molecule. Direct dehydration of LAH(+) is only a high-energy process hardly competitive with the CO loss. A complete mechanistic scheme, based on MP2/6-31G* calculations, is proposed; it involves isomerization of the various protonated forms of LA and the passage through the ion-neutral complex between the 2-hydroxypropyl acylium cation and a water molecule. 相似文献
10.
The ionization potentials and electron affinities of thymine, cytosine, adenine, guanine, and uracil were determined at density functional level using different exchange‐correlation functionals and basis sets. Results showed that the computed ionization potentials are very close to the experimental counterparts. The sign of adiabatic electron affinities of adenine, thymine, and uracil is unaffected by the used level of theory while that for guanine and cytosine depends on both the used potential and basis set. Vertical electron affinities are always negative in agreement with the experimental indications. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 1243–1250, 2000 相似文献
11.
Waller MP Robertazzi A Platts JA Hibbs DE Williams PA 《Journal of computational chemistry》2006,27(4):491-504
The suitability of a hybrid density functional to qualitatively reproduce geometric and energetic details of parallel pi-stacked aromatic complexes is presented. The hybrid functional includes an ad hoc mixture of half the exact (HF) exchange with half of the uniform electron gas exchange, plus Lee, Yang, and Parr's expression for correlation energy. This functional, in combination with polarized, diffuse basis sets, gives a binding energy for the parallel-displaced benzene dimer in good agreement with the best available high-level calculations reported in the literature, and qualitatively reproduces the local MP2 potential energy surface of the parallel-displaced benzene dimer. This method was further critically compared to high-level calculations recently reported in the literature for a range of pi-stacked complexes, including monosubstituted benzene-benzene dimers, along with DNA and RNA bases, and generally agrees with MP2 and/or CCSD(T) results to within +/-2 kJ mol(-1). We also show that the resulting BH&H binding energy is closely related to the electron density in the intermolecular region. The net result is that the BH&H functional, presumably due to fortuitous cancellation of errors, provides a pragmatic, computationally efficient quantum mechanical tool for the study of large pi-stacked systems such as DNA. 相似文献
12.
Li‐Jiao Zhao Xin‐Yan Ma Ru‐Gang Zhong 《International journal of quantum chemistry》2013,113(9):1299-1306
Chloroethylnitrosoureas (CENUs) are an important family of alkylating agents used in the clinical treatment of cancer. Their anticancer mechanism primarily involves the formation of DNA interstrand crosslinks (ICLs) induced by the chloroethyldiazonium ion derived from the decomposition of CENUs. In this work, the mechanism for the formation of ICLs was investigated by density functional theory (DFT) with B3LYP, wB97XD, and M062X functinoals using conductor‐like polarizable continuum model solvent model. Three pathways leading to the formation of three types of G–C crosslinks were compared. G(N1)–C(N3) crosslink is predicted to be the dominant crosslinking product other than G(O6)–C(N4) and G(N2)–C(O2) crosslinks, which is consistent with the previous results obtained from QM/MM computations. The results indicate that the formation of the G(N1)–C(N3) crosslink via pathway A is the most favorable mechanism from both kinetic and thermodynamic standpoints. In this pathway, the chloroethyldiazonium ion alkylates guanine on the O6 site followed by intramolecular cyclization to form O6,N1‐ethanoguanine ( 4 ). The cytosine then reacts with intermediate 4 on the Cα atom to yield the G(N1)–C(N3) crosslink. This work provides reasonable explanations for the supposed mechanism of CENUs‐induced ICLs formation obtained from experimental investigations. © 2012 Wiley Periodicals, Inc. 相似文献
13.
T. Marino D. Mazzuca M. Toscano N. Russo A. Grand 《International journal of quantum chemistry》2007,107(2):311-317
The interaction of uracil, thymine, cytosine, adenine, and guanine with zinc ion was studied at the density functional B3LYP/6‐311+G(2df,2p) level. Different binding sites allowing both mono‐metal and bi‐metal coordination were considered for the different low‐lying tautomers of nucleic acid bases. Zinc ion forms stable compounds with all nucleobases. Except for cytosine, mono‐coordination appears to be less favored than bi‐coordination in the other pyrimidines. Instead, the preferred sites in the case of adenine and guanine were found to be the N7 and O6 and N7 and N6 pairs of atoms, respectively. Zinc ion affinity was evaluated for all the complexes and compared with values previously obtained for other transition metal ions. In the present case, the following order of metal ion affinity (MIA) was found: G>A>C>T>U. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007 相似文献
14.
An‐Guo Zhang Hui Zhang Zheng‐Yu Zhou Zhao‐Kun Jia Rui‐Yan Hou 《International journal of quantum chemistry》2008,108(9):1589-1600
For the purpose of investigating the influence of protein unit on the intramolecular proton transfer (IPT) reactions in the simple base guanine, a simple model (formamide) of peptides is designed to biological system investigations, and five complexes of formamide–guanine (FG1, FG2, FG3, FG4, and FG5) are determined at the B3LYP/6‐311++G(d,p) level of theory. For comparison, HF and MP2 methods are also used in this paper. The proton transfer (PT) reaction processes of guanine and FGs have been investigated employing the B3LYP/6‐311++G(d,p) level of theory. The selected thermodynamic and kinetic parameters, such as the activation energies (Ea), changes of enthalpy (ΔH) and changes of free energies (ΔG), as well as the equilibrium constants (Kp) for those reaction processes, have also been obtained by calculational means. The calculated results indicate that the assisted and protected effects of formamide on IPT in guanine are site‐dependent. CH1 is the lowest activation energy needed PT process no matter where the formamide molecule is located in. The activation energy of CH1 with formamide in S2 is the lowest one (153.3 KJ/mol), whereas the one of CH5 with formamide in S5 is the highest (318.3 KJ/mol). © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2008 相似文献
15.
Luís O. de B. Benetoli Henrique de Santana Cássia Thaïs B. V. Zaia Dimas A. M. Zaia 《Monatshefte für Chemie / Chemical Monthly》2008,139(7):753-761
In the present paper, the adsorption of nucleic acid bases (A, adenine; C, cytosine; U, uracil; and T, thymine) on clays (bentonite, kaolinite, and montmorillonite) was studied at different pH (2.00 and 7.20). It should be pointed out there is no reported study of adsorption of nucleic acid bases on clays using seawater
(with the major elements), and a wide range of pH. The main finding of this study was that the ratio of A and T adsorbed on clays ranged from 4.68 to 25.1, much higher than the ratio of their occurrence in organisms ranging from 0.95
to 1.05. The weaker adsorption of U and T on clays raises the question of the possibility of a genetic code based on purines only. The FT-IR spectra at pH 2.00 showed that the interaction of A, C, T, and U with the clays occurs through positively charged, protonated groups.
Correspondence: Dr. Dimas A. M. Zaia, Departamento de Química-CCE, Universidade Estadual de Londrina, 86051-990 Londrina-PR,
Brazil. 相似文献
16.
We show here that an economic basis set can describe nucleic acid base pairs involving the hydrogen bond interactions in density functional calculations. The economic basis set in which the polarization function is added only to oxygen and nitrogen atoms of strong electronegativity can predict reliable geometric structures and dipole moment of nucleic acid base pairs, comparable to those obtained from the basis set of 6-31G* in B3LYP calculations. Combining single point calculations with the standard basis set on the geometric structures optimized by the economic basis set, the present approach has predicted accurate natural bond orbital charge, binding energy, electronegativity, hardness, softness, and electrophilicity index. The principle for basis selection presented in this study can be regarded as a general guideline in the computation of large biological systems with considerably high accuracy and low computational expense. 相似文献
17.
Density functional theory (DFT) calculations have been used to explore electron attachment to the purines adenine and guanine and their hydrogen atom loss. Calculations show that the dehydrogenation at the N9 site in the adenine and guanine transient anions is the lowest‐cost channel of hydrogen loss, and the N9? H bond scission has Gibbs free energies of dissociation ΔG° of 8.8 kcal mol?1 for the anionic adenine and 13.9 kcal mol?1 for the anionic guanine. The relatively high feasibility of low‐energy electron (LEE)‐induced N9? H bond cleavage in the purine nucleobases arises from high electron affinities of their H‐deleted counterparts. Unlike adenine, other N? H bond dissociations are competitive with the N9? H bond fission in the anionic guanine. The replacement of hydrogen in the ring of purine has a significant effect on the N9? H bond fragmentation. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007 相似文献
18.
19.
Hongwei Shi Xiangui Huang Guixia Liu Kunqian Yu Congying Xu Weihua Li Bubing Zeng Yun Tang 《International journal of quantum chemistry》2013,113(9):1339-1348
In asymmetric Michael addition between ketones and nitroolefins catalyzed by L ‐proline, we observed that it was benzoic acid or its derivatives rather than other proton acid that could accelerate the reaction greatly, and different benzoic acid derivatives brought different yields. To explain the experimental phenomena, a density functional theory study was performed to elucidate the mechanism of proline‐catalyzed asymmetric Michael addition with benzoic acid. The results of the theoretical calculation at the level of B3LYP/6‐311+G(2df,p)//B3LYP/6‐31G(d) demonstrated that benzoic acid played two major roles in the formation of nitroalkane: assisting proton transfer and activating the nitro group. In the stage of enamine formation from imine, the energy profiles of benzoic acid derivatives were also calculated to investigate the reasons why different benzoic acid derivatives caused different yields. The results demonstrated that the pKa value was the major factor for p‐substituted benzoic acid derivatives to improve the yields, whereas for m/o‐substituted benzoic acid derivatives, both pKa value and electronic and steric effects could significantly increase the yields. The calculated results would be very helpful for understanding the reaction mechanism of Michael addition and provide some insights into the selection of efficient additives for similar experiments. © 2012 Wiley Periodicals, Inc. 相似文献
20.
We have carried out an extensive exploration of the gas-phase basicity of archetypal neutral bases across the periodic system using the generalized gradient approximation (GGA) of the density functional theory (DFT) at BP86/QZ4P//BP86/TZ2P. First, we validate DFT as a reliable tool for computing proton affinities and related thermochemical quantities: BP86/QZ4P//BP86/TZ2P is shown to yield a mean absolute deviation of 2.0 kcal/mol for the proton affinity at 298 K with respect to experiment, and 1.2 kcal/mol with high-level ab initio benchmark data. The main purpose of this work is to provide the proton affinities (and corresponding entropies) at 298 K of the neutral bases constituted by all maingroup-element hydrides of groups 15-17 and the noble gases, that is, group 18, and periods 1-6. We have also studied the effect of step-wise methylation of the protophilic center of the second- and third-period bases. 相似文献