首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, two dimensional heat/mass transfer characteristics and flow features were investigated in a rectangular wavy duct with various corrugation angles. The test duct had a width of 7.3 mm and a large aspect ratio of 7.3 to simulate two dimensional characteristics. The corrugation angles used were 100°, 115°, 130°, and 145°. Numerical analysis using the commercial code FLUENT, was used to analyze the flow features. In addition, the oil-lamp black method was used for flow visualization. Local heat/mass transfer coefficients on the corrugated walls were measured using a naphthalene sublimation technique. The Reynolds number, based on the duct hydraulic diameter, was varied from 700 to 5,000. The experimental results and numerical analysis showed interesting and detailed features in the wavy duct. Main flow impinged on upstream of a pressure wall, and the flow greatly enhanced heat/mass transfer. On a suction wall, however, flow separation and reattachment dominantly affected the heat/mass transfer characteristics on the wall. As the corrugation angle decreased (it means the duct has more sharp turn), the region of flow stagnation at the front part of the pressure wall became wider. Also, the position of flow reattachment on the suction wall moved upstream as the corrugation angle decreased. A high heat transfer rate appeared at the front part of the pressure wall due to main-flow impingement, and at the front part of the suction wall due to flow reattachment. The high heat/mass transfer region by the main-flow impingement and the circulation flow induced at a valley between the pressure and suction walls changed with the corrugation angle and the Reynolds number. As the corrugation angle decreased, the flow in the wavy duct changed to transition to turbulent flow earlier.  相似文献   

2.
Heat transfer characteristics of hydrodynamically developing laminar flow in a circular duct with different thermal boundary conditions were calculated by solving the equations of continuity, motion and energy in finite difference form. Results are presented for linear, sinusoidal and exponential variations of the prescribed wall heat flux along the duct length. A comparison shows that the influence of the thermal boundary condition on heat transfer increases with increasing development of velocity and temperature profiles. As a side result an improved correlation for heat transfer with constant wall heat flux in hydrodynamically developing flow is presented.  相似文献   

3.
Two-pass internal cooling passage with rib turbulators has been investigated for convective heat/mass transfer under rotating conditions. The flow and heat transfer characteristics in the cooling passage are very complicated so that it is required the detail analysis to design more efficient gas turbine blades. A naphthalene sublimation technique is employed to determine detailed local heat transfer coefficients using the heat and mass transfer analogy. The local heat/mass transfer and flow pattern in the cooling passage are changed significantly according to rib configurations, duct turning geometries and duct rotation speeds. Four different rib configurations are investigated to obtain the combined effects of the angled rib, duct turning and rotation. The results show that the duct rotation generates the heat/mass transfer discrepancy between the leading and trailing walls due to the secondary flows induced by the Coriolis force. The angled ribs generate a single rotating secondary flow with the cross-rib arrangement and the duct turning makes a strong Dean-type vortex. These vortices affect significantly the heat/mass transfer on the duct wall. The overall heat transfer pattern on the leading and trailing surfaces for the first and second passes are dependent on the duct rotation, but the local heat transfer trend is affected mainly by the rib arrangements. In addition, the present study observes the rotating effect in the two-pass smooth duct to obtain the baseline data in comparison with the ribbed duct for various rib arrangements.  相似文献   

4.
The mixed convection heat transfer of upward molten salt flow in a vertical annular duct is experimentally and numerically studied. The heat transfer performances of mixed convection are measured under Reynolds number 2,500–12,000 and inlet temperature 300–400 °C, and Nusselt number of molten salt flow with cooled inner wall monotonically increases with buoyancy number. The mixed convection is further simulated by low-Reynolds number k-ε model and variable properties, and the heat transfer tendency from numerical results agrees with that from experiments. At low Reynolds number, the natural convection plays more important role in the mixed convection. As the buoyancy number rises, the thickness of flow boundary layer near the inner wall increases, while the effective thermal conductivity remarkably rises, so the enhanced heat transfer of mixed convection is mainly affected by the effective thermal conductivity due to turbulent diffusion.  相似文献   

5.
A physical model was developed to study heat transfer in turbulent dispersed flow at very high vapor quality in a vertical pipe by numerically solving the coupling governing differential equations for both phases. Major heat transfer mechanisms included in the model were the thermal nonequilibrium effects, droplet vaporization, droplet deposition on the duct wall and thermal radiative transfer. The predicted results indicated that vapor superheating is dominant for the cases with high wall superheat, otherwise droplet vaporization dominates the energy transport processes. Heat transfer during the droplet-wall interaction only exists at low wall superheat but in small amounts.  相似文献   

6.
Convective heat transfer coefficient is closely related with flow and thermal conditions. To define heat transfer coefficient, a reference temperature needs to be properly selected, which can be the fluid bulk mean temperature for internal flows or the temperature at the far field for external flows. For complicated flows, the adiabatic wall temperature is commonly adopted as the reference temperature, while other options can also be applied. This paper analyzed some of the potential selections of the reference temperature for different flow settings, including film cooling, jet impingement with cross flows, and a mixing flow in a straight duct with or without internal heat source. It is observed that heat transfer coefficient changes dramatically with selection of reference temperatures. In case of constant wall temperature, using adiabatic wall temperature as reference temperature can result in negative heat transfer coefficient, which means the heat flux has a different direction with the defined driving temperature difference. To avoid the inconsistency due to the reference temperature, an innovative method is proposed to calculate the heat transfer coefficient of complicated flows.  相似文献   

7.
Radiation absorption by preferentially concentrated particles in a turbulent square duct flow is studied experimentally. The particle-laden flow is exposed to near-infrared radiation, and the gas phase temperature statistics are measured along the wall bisector of the duct. It is found that the instantaneous temperature fluctuations are comparable to the overall mean temperature rise. The temperature statistics at the duct centerline and near the wall are qualitatively different. The former reflects preferential concentration in isotropic flows while the latter displays evidence of particle clustering into streamwise elongated streaks. Comparison of the experimental data to a simplified heat transfer model suggests that the Lagrangian evolution of particle clusters and voids, and turbulent mixing in the vicinity of particle clusters, are important. This work was motivated by particle solar receiver technology, but the findings are also relevant to systems where there is localized heat release or mass transfer from disperse particles or droplets. It shows that obtaining Lagrangian histories of particle trajectories is an important next step towards understanding thermal transport phenomena in particle-laden turbulent flows.  相似文献   

8.
Reynolds averaged simulation of flow and heat transfer in ribbed ducts   总被引:6,自引:0,他引:6  
The accuracy of modern eddy-viscosity type turbulence models in predicting turbulent flows and heat transfer in complex passages is investigated. The particular geometries of interest here are those related to turbine blade cooling systems. This paper presents numerical data from the calculation of the turbulent flow field and heat transfer in two-dimensional (2D) cavities and three-dimensional (3D) ribbed ducts. It is found that heat transfer predictions obtained using the v2f turbulence model for the 2D cavity are in good agreement with experimental data. However, there is only fair agreement with experimental data for the 3D ribbed duct. On the wall of the duct where ribs exist, predicted heat transfer agrees well with experimental data for all configurations (different streamwise rib spacing and the cavity depth) considered in this paper. But heat transfer predictions on the smooth-side wall do not concur with the experimental data. Evidence is provided that this is mainly due to the presence of strong secondary flow structures which might not be properly simulated with turbulence models based on eddy viscosity.  相似文献   

9.
In this study, effects of geometrical parameters on the average convection heat transfer characteristics in helical square ducts were investigated both experimentally and numerically. The inner wall of the helical square duct was uniformly temperatured, and the top, bottom, and outer walls were adiabatic. The Renormalization Group (RNG) k–ε turbulence model was used to simulate turbulent flow and heat transfer. The governing equations were solved by a finite volume method. Numerical results were found to be in good agreement with the presented experimental data. The new correlation was proposed for the average heat transfer coefficient on the inner wall of the helical square duct. The results showed that the ratio of pitch to coil radius b/R has no obvious effect on the inner wall convective heat transfer coefficient but the ratio of hydraulic radius to coil radius a/R has considerable effect.  相似文献   

10.
The structured packed bed is considered a promising reactor owing to its low pressure drop and good heat transfer performance. In the heat transfer process of thermal storage in packed beds, natural convection plays an important role. To obtain the mixed convective heat transfer characteristics and mechanisms in packed beds, numerical simulations and coupling analyses were carried out in this study on the unsteady process of fluid flow and heat transfer. A three-dimensional model of the flow channel in the packed bed was established, and the Navier–Stokes equations and Laminar model were adopted for the computations. The effects of the driving force on fluid flow around a particle were studied in detail. The differences in velocity and density distributions under different flow directions due to effect of the aiding flow or opposing flow were intuitively demonstrated and quantitatively analyzed. It was found that the driving force strengthens the fluid flow near the particle surface when aiding flow occurs and inhibits the fluid flow when opposing flow occurs. The boundary layer structure was changed by the natural convection, which in turn influences the field synergy angle. For the aiding flow, the coordination between the velocity and density fields is higher than that for the opposing flow. By analysis the effects of physical parameters on mixed convective heat transfer, it is indicated that with an increase in the fluid-solid temperature difference or the particle diameter, or a decrease in the fluid temperature, the strengthening or inhibiting effect of natural convection on the heat transfer became more significant.  相似文献   

11.
 A conjugate numerical model proposed by Nakayama et al. for the steady problem of cooling a fluid flowing through a coiled tube, has been successfully extended to investigate two distinctive thermal problems, namely, the transient cooling processes associated with a beer dispenser, and the transient processes of heat storage and recovery associated with a packed bed saturated with a molten salt. An axisymmetric numerical procedure is adopted for determining the velocity and temperature fields within the chilled water bath of the beer dispenser. A simplified one-dimensional heat transfer model is introduced for coupling the tube flow with the recirculating flow in the bath. A similar axisymmetric finite difference procedure is applied for the heat transfer analysis of the packed bed saturated with a molten salt. For the heat recovery process, a one-dimensional heat balance equation for the two-phase flow with a helically-coiled tube is introduced to update the wall surface temperatures, which are needed to calculate the temperature field in the saturated packed bed. The numerical results for both thermal systems associated with coiled tubes agree very well with the corresponding velocity and temperature data obtained from the experiments. Received on 28 August 2000 / Published online: 29 November 2001  相似文献   

12.
Three-dimensional fully developed turbulent fluid flow and heat transfer in a square duct are numerically investigated with the author's anisotropic low-Reynolds-number k-ε turbulence model. Special attenton has been given to the regions close to the wall and the corner, which are known to influence the characteristics of secondary flow a great deal. Hence, instead of the common wall function approach, the no-slip boundary condition at the wall is directly used. Velocity and temperature profiles are predicted for fully developed turbulent flows with constant wall temperature. The predicted variations of both local wall shear stress and local wall heat flux are shown to be in close agreement with available experimental data. The present paper also presents the budget of turbulent kinetic energy equation and the systematic evaluation for existing wall function forms. The commonly adopted wall function forms that are valid for two-dimensional flows are found to be inadequate for three-dimensional turbulent flows in a square duct.  相似文献   

13.
The steady-state conjugated turbulent heat transfer with axial conduction in the wall and convection boundary conditions is solved with the generalized integral transform technique for the flow of Newtonian fluid in parallel-plate duct. A lumped wall model that neglects transverse temperature gradients in the solid but that takes into account the axial heat conduction along the wall is adopted. Highly accurate results are presented for the fluid bulk and wall temperatures and Nusselt number. The effects of the conjugation parameter, Biot number, and the dimensionless channel length on Nusselt number and fluid bulk and wall temperatures are systematically investigated.  相似文献   

14.
An experimental study was carried out to investigate enhancement of heat transfer in compact heat exchanger by keeping pressure drop constant in a given range. Two different test matrices, cylindrical and triangular, used to find the optimum ribs were compared with a smooth channel. The investigation was performed with both laminar and turbulent forced flow for Reynolds numbers from 250 to 7000. The geometric parameters, in order to satisfied manufacturer demands, were fixed at p/e=6.67 and the wall temperature was held constant at 50°C. The technique of holographic interferometry was used to determine the temperature distribution in the test duct. Velocity distribution was measured using laser doppler anemometer techniques. For comparison the technique of global measurement was also used. The results revealed that cylindrical ribs are optimum heat transfer for conversion of pressure drop. An 8% experimental error was found in global measurement compared to holographic interferometry.  相似文献   

15.
The effect of channel inclination on the variation in the wall shear stress and the heat transfer in a two-phase bubbly flow in a rectangular channel is experimentally and numerically investigated. The wall friction was measured using the electrodiffusion method and the temperature was measured by tiny platinum resistance thermometers. The model is based on the system of RANS equations with account for the back influence of the bubbles on the flow characteristics. Flow turbulence is calculated according to the model of transport of the Reynolds stress tensor components. It is shown that in the gas-liquid flow the angle of the channel inclination to the horizon can have a considerable effect on the friction and the heat transfer. The greatest friction and heat transfer values correspond to the angles of channel inclination ranging from 30 to 50°. In the inclined two-phase bubbly flow the shear stress enhancement on the wall amounts to 30% and that of the heat transfer to 15%. A friction and heat transfer reduction to 10 and 25%, respectively, is noticed in near-horizontal flows.  相似文献   

16.
The transient heat transfer behavior in the case of heat removal from a cylindrical heat storage vessel packed with spherical particles was investigated experimentally for various factors (flow rate, diameter of spherical particles packed, temperature difference between flowing cold air and spherical particles accumulating heat, and physical properties of spherical particles). The experiments were covered in ranges of Reynolds number based on the mean diameter of spherical particles packed Red = 10.3–2200, porosity?=0.310 to 0.475, ratio of spherical particle diameter to cylinder diameterd/D = 0.0075–0.177 and ratio of length of the cylinder to cylinder diameterL/D=2.5–10. It was found that especially the flow rate and the dimension of spherical particles played an important role in estimating the transient local heat transfer characteristics near the wall of the cylindrical vessel in the present heat storage system. As flow rate and diameter of spherical particles were increased under a given diameter of the cylinder heat storage vessel, the mean heat transfer coefficient between the flow cold air and the hot spherical particles increased and the time period to finish removing heat from the vessel reduced. In addition, the useful experimental correlation equations of mean heat transfer coefficient between both phases and the time period to finish removing heat from the vessel were derived with the functional relationship of Nusselt numberNu d=f [modified Prandtl numberPr * (d/D), Red) and Fourier numberFo = f(d/D, L/D, Pr*, Red).  相似文献   

17.
This paper presents the comparative studies on the effect of duct height on heat transfer and flow behavior between co-angular and co-rotating type finned surface in duct. Experiments were performed to investigate the effect of duct height on heat transfer enhancement of a surface affixed with arrays (7 × 7) of short rectangular plate fins of a co-angular and a co-rotating type pattern in the duct. An infrared imaging system with the camera of TVS 8000 was used to measure the temperature distributions to calculate the local heat transfer coefficients of the representative fin regions. Pressure drop and heat transfer experiments were performed for both types of fin pattern varying the duct to fin height ratio (H d/H f) of 2.0–5.0. The friction factor calculated from the pressure drop shows that friction factor decreases with increasing the duct to fin height ratio (H d/H f) regardless of fin pattern and this is expected because the larger friction occurs for smaller duct to fin height ratios. Detailed heat transfer distribution gives a clear picture of heat transfer characteristics of the overall surface as well as the influence of the duct height. In addition, different flow behavior and flow structure developed by both patterns were visualized by the smoke flow visualization technique.  相似文献   

18.
Buoyancy-induced airflow in a box with one wall heated, an unheated inlet duct connected to its floor, and an exit duct with one side heated connected to its ceiling is experimentally investigated. A flow rate prediction method based on buoyancy and flow resistance balance is proposed and experimentally validated. The flow pattern and thermal stratification in the box; the flow resistance characteristics for low Reynolds numbers; the relationship among buoyancy, flow resistance, and pressure defect; the chimney effect caused by the exit duct; and the heat transfer characteristics of the heated walls are clarified. The flow rate, thermal stratification, and flow enhancement due to the chimney effect are considerably dependent on the size of the gap of the exit duct.  相似文献   

19.
The present study investigates convective heat/mass transfer and flow characteristics inside a cooling passage of rotating gas-turbine blades. The rotating duct with and without rib turbulators are used. The ribs of 70° attack angle are attached on leading and trailing surfaces in a staggered arrangement. A naphthalene sublimation technique is employed to determine detailed local heat transfer coefficients using the heat and mass transfer analogy. Additional numerical calculations are conducted to analyze the flow patterns in the cooling. The local heat/mass transfer and the flow pattern in the passage are changed significantly according to rib configurations, duct turning geometry and duct rotation speed. The results show that the duct rotation generates the heat transfer discrepancy between the leading and trailing walls due to the secondary flows induced by the Coriolis force. The heat/mass transfer on the ribbed duct shows 80% higher than the smooth duct because the ribs attached on the walls disturb the mainflow resulting in recirculation and secondary flows near the rib with the secondary flow generated by rotation. The overall heat transfer pattern on the leading and trailing walls for the first and second passes depend on the rotating speed and the turning geometry, but the local heat transfer trend is affected mainly by the rib arrangeements.  相似文献   

20.
Experiments have been performed to investigate the freezing heat transfer characteristics in a return bend with a rectangular cross section. The experiments were carried out for two kinds of duct heights of 30 and 50 mm under the fixed size of 300 mm in duct width and 159 mm in curvature radius of convex wall. Both the convex and concave walls of a return bend were kept less than the freezing temperature of water. It was found that the freezing characteristics on the convex wall are markedly different from those on the concave wall of a return bend, and that the cooling temperature ratio is one of the most important parameters on the forced-convection freezing heat transfer in a return bend.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号