首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ano Y  Tobisu M  Chatani N 《Organic letters》2012,14(1):354-357
The palladium-catalyzed direct alkynylation of C-H bonds in aromatic carboxylic acid derivatives is described. The use of 8-aminoquinoline as a directing group facilitates the alkynylation of an electronically diverse range of C(sp(2))-H bonds.  相似文献   

2.
A simple copper-based catalytic system has been developed for the carbon-hydrogen amidation reaction. The copper-homoscorpionate complex Tp(Br3)Cu(NCMe) catalyzes the transfer of the nitrene unit NTs (Ts = p-toluenesulfonyl) and its subsequent insertion into the sp(3) C-H bonds of alkyl aromatic and cyclic ethers or the sp(2) C-H bonds of benzene using PhI=NTs as the nitrene source, affording the corresponding trisubstitued NR(1)HTs amines in moderate to high yields. The use of the environmentally friendly chloramine-T has also proven effective, with the advantage that sodium chloride is formed as the only byproduct. A tandem, one-pot consecutive nitrene-carbene insertion system has been developed to yield amino acid derivatives.  相似文献   

3.
Baslé O  Li CJ 《Organic letters》2008,10(17):3661-3663
An efficient method was developed for arylation of sp(3) C-H bonds using copper bromide as catalyst in absence of directing group with arylboronic acids. The oxidative arylation provides easy access to biologically active tetrahydroisoquinoline derivatives and can either use peroxide or molecular oxygen as oxidant.  相似文献   

4.
This communication describes the Pd(OAc)2-catalyzed intermolecular amidation reactions of unactivated sp2 and sp3 C-H bonds using primary amides and potassium persulfate. The substrates containing a pendent oxime or pyridine group were amidated with excellent chemo- and regioselectivities. It is noteworthy that reactive C-X bonds were well-tolerated and a variety of primary amides can be effective nucleophiles for the Pd-catalyzed C-H amidation reactions. For the reaction of unactivated sp3 C-H bonds, beta-amidation of 1 degrees sp3 C-H bonds versus 2 degrees C-H bonds is preferred. The catalytic reaction is initiated by chelation-assisted cyclopalladation involving C-H bond activation. Preliminary mechanistic study suggested that the persulfate oxidation of primary amides should generate reactive nitrene species, which then reacted with the cyclopalladated complex.  相似文献   

5.
Hari DP  König B 《Organic letters》2011,13(15):3852-3855
Eosin Y catalyzes efficiently the visible light mediated coupling of sp(3) C-H bonds adjacent to the nitrogen atom in tetrahydroisoquinoline derivatives in the absence of an external oxidant. Nitroalkanes, dialkyl malonates, malononitrile, and dialkyl phophonates were used as pronucleophiles in this metal-free, visible light oxidative coupling reaction.  相似文献   

6.
Monomeric imidozirconocene complexes of the type Cp2(L)Zr=NCMe3 (Cp = cyclopentadienyl, L = Lewis base) have been shown to activate the carbon-hydrogen bonds of benzene, but not the C-H bonds of saturated hydrocarbons. To our knowledge, this singularly important class of C-H activation reactions has heretofore not been observed in imidometallocene systems. The M=NR bond formed on heating the racemic ethylenebis(tetrahydro)indenyl methyl tert-butyl amide complex, however, cleanly and quantitatively activates a wide range of n-alkane, alkene, and arene C-H bonds. Mechanistic experiments support the proposal of intramolecular elimination of methane followed by a concerted addition of the hydrocarbon C-H bond. Products formed by activation of sp2 C-H bonds are generally more thermodynamically stable than those formed by activation of sp3 C-H bonds, and those resulting from reaction at primary C-H bonds are preferred over secondary sp3 C-H activation products. There is also evidence that thermodynamic selectivity among C-H bonds is sterically rather than electronically controlled.  相似文献   

7.
A catalytic allylic alkylation was developed via the cross-dehydrogenative-coupling reaction of allylic sp3 C-H and methylenic sp3 C-H catalyzed by copper bromide and cobalt chloride in the presence of an oxidizing reagent, t-BuOOH. This methodology provides a direct way to use allylic sp3 C-H bonds for forming C-C bonds.  相似文献   

8.
An organocatalytic cascade reaction that involves the formation of C-N, C-O and C=N bonds in one process via dual sp(3) C-H activation has been developed. This protocol affords a facile metal-free methodology for the synthesis of oxazole derivatives in air under mild conditions.  相似文献   

9.
A new strategy for generating benzylpalladium reactive species from toluenes via nondirected C(sp(3))-H activation has been developed. This led to construction of an efficient Pd-catalyzed reaction protocol for the oxidative carboxylation of benzylic C-H bonds to form substituted 2-phenylacetic acid esters and derivatives from inexpensive, commercially available starting materials.  相似文献   

10.
The geometric isotope effect (GIE) of sp- (acetylene-water), sp(2)- (ethylene-water), and sp(3)- (methane-water) hybridized intermolecular C-H...O and C-D...O hydrogen bonds has been analyzed at the HF/6-31++G level by using the multicomponent molecular orbital method, which directly takes account of the quantum effect of proton/deuteron. In the acetylene-water case, the elongation of C-H length due to the formation of the hydrogen bond is found to be greater than that of C-D. In contrast to sp-type, the contraction of C-H length in methane-water is smaller than that of C-D. After the formation of hydrogen bonds, the C-H length itself in all complexes is longer than C-D and the H...O distance is shorter than D...O, similar to the GIE of conventional hydrogen bonds. Furthermore, the exponent (alpha) value is decreased with the formation of the hydrogen bond, which indicates the stabilization of intermolecular C-H...O hydrogen bonds as well as conventional hydrogen bonds. In addition, the geometric difference induced by the H/D isotope effect of the intramolecular C-H...O hydrogen bond shows the same tendency as that of intermolecular C-H...O. Our study clearly demonstrates that C-H...O hydrogen bonds can be categorized as typical hydrogen bonds from the viewpoint of GIE, irrespective of the hybridizing state of carbon and inter- or intramolecular hydrogen bond.  相似文献   

11.
交叉脱氢偶联反应*   总被引:2,自引:0,他引:2  
发现高效高选择性的有机合成反应是有机合成化学研究中一个重要的发展方向。传统的有机合成化学是建立在官能团相互转化基础上的,又称官能团化学。非活泼化学键(如C-H键)的直接官能团化省去了一步甚至多步制备官能团化的反应底物,因此,非活泼化学键活化是提高有机合成反应效率的一个重要发展方向。交叉脱氢偶联(Cross-Dehydrogenative-Coupling,CDC)反应就是直接利用不同反应底物中的C-H键,在氧化条件下,进行脱氢偶联反应形成C-C键。交叉脱氢偶联反应实现了更短的合成路线和更高的原子利用效率,为直接利用简单的原料进行高效的复杂的有机合成任务提供了一种新的思路和手段。  相似文献   

12.
Hydrogen-atom-transfer(HAT) is an efficient way for direct C-H functionalization of inert C-H bonds,therefore it has attracted great interests in recent years. So far, various HAT catalysts have been developed. Among them, quinuclidine and its derivatives show different characters toward other HAT catalysts as they tend to abstract electron-rich and hydridic hydrogens in the presence of weak and neutral C-H bonds. These features enable direct C-H functionalization of compounds with various groups which are unable or difficult by other methods. This review summarizes recent advance of photoinduced reactions with quinuclidine and its derivatives as HAT catalysts and exhibits powerful synthetic potential by using quinuclidine and its derivatives as HAT catalysts.  相似文献   

13.
An aerobic oxidative cross-dehydrogenative coupling reaction between sp(3) C-H and sp(2) C-H bonds is developed by employing a vanadium catalyst (10 mol%) in an aqueous medium using molecular oxygen as the oxidant. This environmentally benign strategy exhibits larger substrate scope and shows high regioselectivity.  相似文献   

14.
We found that dioxiranes generated in situ from ketones 1-6 and Oxone underwent intramolecular oxidation of unactivated C-H bonds at delta sites of ketones to yield tetrahydropyrans. From the trans/cis ratio of oxidation products 1a and 2a as well as the retention of the configuration at the delta site of ketone 5, we proposed that the oxidation reaction proceeds through a concerted pathway under a spiro transition state. The intramolecular oxidation of ketone 6 showed the preference for a tertiary delta C-H bond over a secondary one. This intramolecular oxidation method can be extended to the oxidation of the tertiary gamma' C-H bond of ketones 9 and 10. For ketone 11 with two delta C-H bonds and one gamma' C-H bond linked respectively by a sp(3) hydrocarbon tether and a sp(2) ester tether, the oxidation took place exclusively at the delta C-H bonds. Finally, by introducing proper tethers, regioselective hydroxylation of steroid ketones 12-14 have been achieved at the C-17, C-16, C-3, and C-5 positions.  相似文献   

15.
A method for five- and six-membered heterocycle formation by palladium-catalyzed C-H/N-H coupling is presented. The method employs a picolinamide directing group, PhI(OAc)(2) oxidant, and toluene solvent at 80-120 °C. Cyclization is effective for sp(2) as well as aliphatic and benzylic sp(3) C-H bonds.  相似文献   

16.
Kim SH  Yoon J  Chang S 《Organic letters》2011,13(6):1474-1477
Pd-Catalyzed oxidative alkynylation of azoles with terminal alkynes was developed via simultaneous activation of both heterocyclic sp(2) C-H and alkynyl sp C-H bonds. The choice of palladium catalyst source and external base resulted in being important factors for performing the reaction with high efficiency and selectivity, and air was successfully utilized as an environmental oxidant in the present alkynylation procedure.  相似文献   

17.
Palladium-catalyzed alkylations of sp2 and sp3 C-H bonds with either methylboroxine or alkylboronic acids were developed. Ag2O or AgCO3 is used as a crucial oxidant and promoter for the transmetalation step. Ether, ester, alcohol, and alkene functional groups are tolerated. A new C-H activation pathway differing from the cyclometalation process is elucidated using methylboroxine as the coupling partner.  相似文献   

18.
Various anilides have been directly ortho-acetoxylated through a Pd(OAc)2-catalyzed C-H bond activation process. The amide group in anilides was found to functionalize as an elegant directing group to convert aromatic sp(2) C-H bonds into C-O bonds in high regioselectivity with acetic acid as the acetate source and K(2)S(2)O(8) as the oxidant.  相似文献   

19.
Metalloporphyrins are a class of versatile catalysts with the capability to functionalize saturated C-H bonds via several well-defined atom/group transfer processes, including oxene, nitrene, and carbene C-H insertions. The corresponding hydroxylation, amination, and alkylation reactions provide direct approaches for the catalytic conversion of abundant hydrocarbons into value-added functional molecules through C-O, C-N, and C-C bond formations, respectively. This tutorial review describes metalloporphyrin-based catalytic systems for the functionalization of different types of sp(3) C-H bonds, both inter- and intramolecularly, including challenging primary C-H bonds. Additional features of metalloporphyrin-catalyzed C-H functionalization include unusual selectivities and high turnover numbers.  相似文献   

20.
We report the efficient synthesis of alkyl ethers by the functionalization of unactivated sp(3)- and sp(2)-hybridized C-H bonds. In the Pd(OAc)(2)-catalyzed, PhI(OAc)(2)-mediated reaction system, picolinamide-protected amine substrates undergo facile alkoxylation at the γ or δ positions with a range of alcohols, including t-BuOH, to give alkoxylated products. This method features a relatively broad substrate scope for amines and alcohols, inexpensive reagents, and convenient operating conditions. This method highlights the emerging value of unactivated C-H bonds, particularly the C(sp(3))-H bond of methyl groups, as functional groups in organic synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号