首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of the mixed transition metal compounds, Li[(Ni1/3Co1/3Mn1/3)1–x-y Al x B y ]O2-z F z (x = 0, 0.02, y = 0, 0.02, z = 0, 0.02), were synthesized via coprecipitation followed by a high-temperature heat-treatment. XRD patterns revealed that this material has a typical α-NaFeO2 type layered structure with R3- m space group. Rietveld refinement explained that cation mixing within the Li(Ni1/3Co1/3Mn1/3)O2 could be absolutely diminished by Al-doping. Al, B and F doped compounds showed both improved physical and electrochemical properties, high tap-density, and delivered a reversible capacity of 190 mAh/g with excellent capacity retention even when the electrodes were cycled between 3.0 and 4.7 V.  相似文献   

2.
Layered Ti-doped lithiated nickel cobaltate, LiNi0.8Co0.2 − xTixO2 (where x = 0.01, 0.03, and 0.05) nanopowders were prepared by wet-chemistry technique. The structural properties of synthesized materials were characterized by X-ray diffraction (XRD) and thermo-gravimetric/differential thermal analysis (TG/DTA). The morphological changes brought about by the changes in composition of LiNi0.8Co0.2 − xTixO2 particles were examined through surface examination techniques such as scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses. Electrochemical studies were carried out using 2016-type coin cell in the voltage range of 3.0–4.5 V (vs carbon) using 1 M LiClO4 in ethylene carbonate and diethyl carbonate as the electrolyte. Among the various concentrations of Ti-doped lithiated nickel cobaltate materials, C/LiNi0.8Co0.17Ti0.03O2 cell gives stable charge–discharge features.  相似文献   

3.
To improve the electrochemical properties of Li[Ni1/3Co1/3Mn1/3]O2 at high charge end voltage (4.6 V), a series of the mixed transition metal compounds, Li(Ni1/3Co1/3 − x Mn1/3M x )O2 (M = Mg, Cr, Al; x = 0.05), were synthesized via hydroxide coprecipitation method. The effects of doping Mg, Cr, and Al on the structure and the electrochemical performances of Li[Ni1/3Co1/3Mn1/3]O2 were compared by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), galvanostatic charge–discharge tests, and electrochemical impedance spectroscopy. The XRD results show that all the samples keep layered structures with R3m space group as the Li[Ni1/3Co1/3Mn1/3]O2. SEM images show that all the compounds have spherical shapes and the Cr-doped sample has the largest particle size. Furthermore, galvanostatic charge–discharge tests confirm that the Cr-doped electrode shows improved cycling performance than the undoped material. The capacity retention of Li(Ni1/3Co1/3 − 0.05Mn1/3Cr0.05)O2 is 97% during 50 cycles at 2.8∼4.6 V. The improved cycling performance at high voltage can be attributed to the larger particle size and the prevention of charge transfer resistance (R ct) increase during cycling.  相似文献   

4.
采用高温固相法在空气中合成了Ba1.97-yZn1-xMgxSi2O7∶0.03Eu,y Ce3+系列荧光粉。分别采用X-射线衍射和荧光光谱对所合成荧光粉的物相和发光性质进行了表征。在紫外光330~360 nm激发下,固溶体荧光粉Ba1.97-yZn1-xMgxSi2O7∶0.03Eu的发射光谱在350~725 nm范围内呈现多谱峰发射,360和500 nm处有强的宽带发射属于Eu2+离子的4f 65d1-4f 7跃迁,590~725 nm红光区窄带谱源于Eu3+的5D0-7FJ(J=1,2,3,4)跃迁,这表明,在空气气氛中,部分Eu3+在Ba1.97-yZn1-xMgxSi2O7基质中被还原成了Eu2+;当x=0.1时,荧光粉Ba1.97Zn0.9Mg0.1Si2O7∶0.03Eu的绿色发光最强,表明Eu3+被还原成Eu2+离子的程度最大。当共掺入Ce3+离子后,形成Ba1.97-yZn0.9Mg0.1Si2O7∶0.03Eu,y Ce3+荧光粉体系,其发光随着Ce3+离子浓度的增大由蓝绿区经白光区到达橙红区;发现名义组成为Ba1.96Zn0.9Mg0.1Si2O7∶0.03Eu,0.01Ce3+的荧光粉的色坐标为(0.323,0.311),接近理想白光,是一种有潜在应用价值的白光荧光粉。讨论了稀土离子在Ba2Zn0.9Mg0.1Si2O7基质中的能量传递与发光机理。  相似文献   

5.
Lithium cobalt oxide, LiCoO2, has been the most widely used cathode material in commercial lithium ion batteries. Nevertheless, cobalt has economic and environmental problems that leave the door open to exploit alternative cathode materials, among which LiNi x CoyMn1 − x − y O2 may have improved performances, such as thermal stability, due to the synergistic effect of the three ions. Recently, intensive effort has been directed towards the development of LiNi x Co y Mn1 − x − y O2 as a possible replacement for LiCoO2. Recent advances in layered LiNi x CoyMn1 − x − y O2 cathode materials are summarized in this paper. The preparation and the performance are reviewed, and the future promising cathode materials are also prospected.  相似文献   

6.
陈宏浩  詹晖  朱先军  周运鸿 《化学学报》2005,63(11):1028-1032
以一种新型的软化学方法——流变相法, 成功地合成了锂离子电池正极材料LiNi0.85Co0.15O2. 将在600~850 ℃氧气氛下处理6 h后得到的LiNi1-yCoyO2 (y=0.10, 0.15, 0.20, 0.25), 进行X射线粉末衍射(XRD)与电化学测试. 测试结果表明, 流变相前体经过800 ℃烧结后合成的LiNi0.85Co0.15O2晶胞参数a=0.2866 nm, c=1.4193 nm及晶胞体积V=0.1010 nm3, 以0.1 C倍率在3.0~4.3 V (vs. Li/Li)放电时, 首次放电容量可以达到198.2 mAh/g, 20次循环后, 其放电容量仍在174 mAh/g以上.  相似文献   

7.
0IntroductionMany efforts have been made to develop newmaterials as an alternative to LiCoO2due to the rela-tively high cost and toxicity of Co.Much attention hasbeen paid to layered structure cathode materials suchas LiMnO2and LiNiO2due to their lower co…  相似文献   

8.
采用溶胶-凝胶法制备了钨掺杂镍酸锂正极材料(LiNi_(1-x)W_xO_2,x=1%、3%),研究了钨掺杂对LiNiO_2正极材料电化学性能的影响。结果表明,钨掺杂明显地改善了LiNiO_2的充放电循环性能,在100 mA·g~(-1)的电流密度和2.5~4.5 V电压范围的测试条件下,LiNi_(0.99)W_(0.01)O_2材料循环400次后的容量保持率为62.51%,而LiNiO_2在相同循环条件下的保持率仅为47.06%。同时,钨掺杂也提升了LiNiO_2的充放电倍率性能,掺杂材料在每一个倍率下放电比容量均高于未掺杂材料。  相似文献   

9.
以氟化锂为氟源,通过高温固相法合成了F掺杂的LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2。采用X射线衍射仪(XRD)、扫描电镜(SEM)、X射线光电子能谱(XPS)和电化学测试等手段研究F影响LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2结构和性能的微观机制。结果表明:适量F掺杂可以提高正极材料的放电比容量,改善其倍率性、循环性和热稳定性。当F掺杂量(物质的量分数)为1.5%时,材料的综合电化学性能最优,初始放电比容量(0.2C)和50周循环容量保持率(1C)分别由原始的174.0 mAh·g~(-1)(78.7%)提高到178.6 mAh·g~(-1)(85.7%)。LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2材料性能的改善可归因于F能够增强过渡金属层、锂层与氧层之间的结合力,提高材料的结构稳定性。此外,F掺杂还有利于降低电化学反应中的界面电阻和电荷转移阻抗。  相似文献   

10.
A series of mixed metal hydroxide (Ni x Mn x Co(1–2x)(OH)2) precursors for the preparation of lithiated mixed metal oxides (LiNi x Mn x Co(1–2x)O2) were prepared using a novel coprecipitation approach based on the thermal decomposition of urea. Three different methods were used to achieve the temperature required to decompose urea and subsequently precipitate the hydroxides. The first two methods consisted of either a hydrothermal or microwave-assisted hydrothermal synthesis at 180 °C and elevated pressures. The final method was an aqueous reflux at 100 °C. A complete series (x = 0.00–0.50) was prepared for each method and fully characterized before and after converting the materials to lithiated metal oxides (LiNi x Mn x Co(1–2x)O2). We observed the formation of a complex structure after the coprecipitation of the hydroxides. Scanning electron micrographs images demonstrate that the morphology and particle size of the hydroxide particles varied significantly from x = 0.00–0.50 under hydrothermal synthesis conditions. There is also a significant change in particle morphology as the urea decomposition method is varied. The X-ray diffraction profiles of the oxides synthesized from these hydroxide precursors all demonstrated phase pure oxides that provided good electrochemical performance.  相似文献   

11.
A series of La2 − x Sr x CuO4 (x = 0.0, 0.05, 0.15, 0.25 and 0.35) compounds was investigated for the use of direct electrochemical reduction of NO in an all-solid-state electrochemical cell. The materials were investigated using cyclic voltammetry in 1% NO in Ar and 10% O2 in Ar. The most selective electrode material was La2CuO4, which had an activity of NO reduction that was 6.8 times higher than that of O2 at 400 °C. With increasing temperature, activity increased while selectivity decreased. Additionally, conductivity measurements were carried out, and the materials show metallic conductivity behavior which follows an adiabatic small polaron hopping mechanism.  相似文献   

12.
The series La2 − x Sr x NiO4 (x = 0.0, 0.05, 0.15, 0.25, 0.35, and 1.0) was tested for functionality as electrode materials for direct electrochemical reduction of NO. The materials were tested using cyclic voltammetry in 1% NO and 10% O2 in Ar on a cone-shaped electrode. The best materials for the electrochemical reduction of NO are La2NiO4 and LaSrNiO4, which have current densities for NO reduction 1.82 and 7.09 times higher, respectively, than for O2 at 400 °C. Increasing the temperature decreased the ability to reduce NO before O2 while the activity increased. The adsorbed species during direct decomposition was attempted, clarified using X-ray absorption near-edge structure experiments and thermogravimetry, but no conclusive results were obtained.  相似文献   

13.
Electrolytes of Ce1-x-y Y x Mg y O2-0.5x-y were prepared with citrate method and were characterized by inductively coupled plasma-atomic emission spectrometry, energy dispersive spectrometry, powder X-ray diffraction, and impedance spectroscopy. The effect of composition on the structure, conductivity, and stability of the electrolytes were investigated. When 0≤x≤ about 0.2 and 0≤y≤ about 0.05, the electrolytes were all single phase materials of ceria-based solid solution. However, when y> about 0.05, the electrolytes became two-phase materials, Y3+ and Mg2+ co-doped ceria-based solid solution and free MgO. The sample with nominal composition of Ce0.815Y0.065Mg0.12O2-d showed ionic conductivity at 973 K close to or even a little higher than that of similarly prepared Ce0.9Gd0.1O1.95, but had lower cost of raw materials and a little better stability in reducing atmosphere. The existing of free MgO improved the stability of the electrolytes in reducing atmosphere, but too much free MgO reduced the conductivity.  相似文献   

14.
层状Li(Ni1-xCox)O2结构研究   总被引:5,自引:0,他引:5  
0引言层状钴酸锂是目前锂离子电池主要正极材料,但是,随着锂离子电池的广泛使用,急需比钴酸锂价格低和来源广泛的正极材料,层状锰酸锂和层状镍酸锂受到重视。由于锰氧化物存在有J-T效应,因此,严格意义上的层状锰酸锂的制备极其困难。制备层状镍酸锂也非常困难,高温反应极易生成Li1-xNi1 xO2,具有此种结构的镍酸锂存在严重首次能量衰减和循环性能下降的缺点。采用其他元素掺杂镍酸锂克服其缺点的研究已经很多,其中钴掺杂镍酸锂由于显示了良好的效果而被认为是最有希望替代钴酸锂的锂离子电池正极材料。有关层状镍钴酸锂的研究很多,但不少的…  相似文献   

15.
Nanostructured LiAl x Mn2 − x O4 − y Br y particles were synthesized successfully by annealing the mixed precursors, which were prepared by room-temperature solid-state coordination method using lithium acetate, manganese acetate, lithium bromide, aluminum nitrate, citric acid, and polyethylene glycol 400 as starting materials. X-ray diffractometer patterns indicated that the particles of the as-synthesized samples are well-crystallized pure spinel phase. Transmission electron microscopy images showed that the LiAl x Mn2 − x O4 − y Br y samples consist of small-sized nanoparticles. The results of galvanostatic cycling tests revealed that the initial discharge capacity of LiAl0.05Mn1.95O3.95Br0.05 is 119 mAh g−1; after the 100th cycle, its discharge capacity still remains at 92 mAh g−1. The introduction of Al and Br in LiMn2O4 bring a synergetic effect and is quite effective in increasing the capacity and elevating cycling performance.  相似文献   

16.
Solid solutions of spinel-type oxides with the composition (x = 0.0, 0.3, 0.5, 0.6, 1.0) were prepared with the glycine-nitrate combustion synthesis (x = 0.0, 0.3, 0.5, 0.6) and the citric-acid combustion synthesis (x = 1.0). The oxides were used as electrode materials in a pseudo-three-electrode setup in the temperature range of 400–600 °C. Cyclic voltammetry and electrochemical impedance spectroscopy were used to characterize the electrochemical behavior in 1% NO and 10% O2. Measurements show that NiFe2O4 has relatively high cathodic activity in both NO and O2, whereas MgFe2O4 shows much higher activity in NO compared to O2. MgFe2O4 was also measured with cyclic voltammetry in 1% NO2 and different gas mixtures of NO and O2 at 300 and 400 °C. Results show that the cathodic activities (−0.6 V) are relatively high with current ratios, , ranging from 10.1–167.7 and with a maximum at 400 °C. Dilatometry measurements were performed on the materials in air up to 1,000 °C, and they showed that the Curie temperature could be detected for all samples. Four-point DC resistivity measurements at elevated temperatures show that Ni0.4Mg0.6Fe2O4 has the highest conductivity, whereas Ni0.7Mg0.3Fe2O4 and NiFe2O4 have the highest conductivity at lower temperatures.  相似文献   

17.
The structure, thermal expansion coefficient, and electroconductivity of YBa2(Cu1−x Al x )3O6+δ (x = 0.0–0.9) were studied at 20 to 900°C in air. The most conducting compositions of YBa2(Cu1−x Me x )3O6+δ (Me = Al, Co, Fe) were determined. The electrochemical activity of electrodes with the most conducting compositions of YBa2(Cu1−x Me x )3O6+δ (Me = Al, Co, Fe) was studied in a wide polarization range in the contact with 0.9ZrO2 + 0.1Y2O3 solid electrolyte in air at the temperatures of 700 to 900°C. Original Russian Text ? V.K. Gil’derman, I.D. Remez, 2009, published in Elektrokhimiya, 2009, Vol. 45, No. 5, pp. 612–615. Published by report at IX Conference “Fundamental Problems of Solid State Ionics”, Chernogolovka, 2008.  相似文献   

18.
A facile method has been developed to synthesize Al2O3-coated LiNi0.8Co0.2O2 cathode materials. The sample was characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and energy dispersive analysis of X-rays (EDAX). Electrochemical tests show that the cycling stability of LiNi0.8Co0.2O2 at room temperature is effectively improved by Al2O3 coating. The differential scanning calorimetry (DSC) and high temperature (60 °C) cycling tests indicate that Al2O3 coating can also improve the thermal stability of LiNi0.8Co0.2O2, which is attributed to that the coating layer can protect the LiNi0.8Co0.2O2 particles from reacting with the electrolyte.  相似文献   

19.
采用高温固相法在空气中合成了Ba1.97-yZn1-xMgxSi2O7:0.03Eu,yCe3+系列荧光粉。分别采用X-射线衍射和荧光光谱对所合成荧光粉的物相和发光性质进行了表征。在紫外光330~360 nm激发下,固溶体荧光粉Ba1.97-yZn1-xMgxSi2O7:0.03Eu的发射光谱在350~725 nm范围内呈现多谱峰发射,360和500 nm处有强的宽带发射属于Eu2+离子的4f65d1-4f7跃迁,590~725 nm红光区窄带谱源于Eu3+5D0-7FJ (J=1,2,3,4)跃迁,这表明,在空气气氛中,部分Eu3+在Ba1.97-yZn1-xMgxSi2O7基质中被还原成了Eu2+;当x=0.1时,荧光粉Ba1.97Zn0.9Mg0.1Si2O7:0.03Eu的绿色发光最强,表明Eu3+被还原成Eu2+离子的程度最大。当共掺入Ce3+离子后,形成Ba1.97-yZn0.9Mg0.1Si2O7:0.03Eu,yCe3+荧光粉体系,其发光随着Ce3+离子浓度的增大由蓝绿区经白光区到达橙红区;发现名义组成为Ba1.96Zn0.9Mg0.1Si2O7:0.01Ce3+,0.03Eu的荧光粉的色坐标为(0.323,0.311),接近理想白光,是一种有潜在应用价值的白光荧光粉。讨论了稀土离子在Ba2Zn0.9Mg0.1Si2O7基质中的能量传递与发光机理。  相似文献   

20.
通过添加烷基季铵盐类表面活性剂来调控材料形貌和粒径的改性方法,在LiNi0.8Co0.1Mn0.1O2前驱体合成过程中添加表面活性剂十二烷基三甲基溴化铵(DTAB)和十六烷基三甲基溴化铵(CTAB),利用尿素作为配合剂和沉淀剂,采用溶剂热法合成LiNi0.8Co0.1Mn0.1O2前驱体。最后,高温混锂煅烧合成椭球形的空心多孔材料。相比于不添加表面活性剂的样本,改性的材料有着更小的粒径和更加规整的形貌。电化学测试表明,添加DTAB和CTAB之后,首次充电容量分别达到223与251 mAh·g-1(0.1C)。其中,添加CTAB的样品首次放电容量达到216 mAh·g-1(0.1C),100次循环后容量保持率为85.1%,高于LiNi0.8Co0.1Mn0.1O2的81.7%(0.1C)。表面活性剂的改性显著提高了材料的电化学性能,为高镍三元正极材料的改性提供了一种新的思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号