首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cellulose powder was found to be a substrate favoring the deposition of calcite crystals from stable supersaturated solutions at pH 8.50 and at 25 degrees C. Kinetic analysis of the initial rates showed that they were proportional with the relative supersaturation with respect to calcite. Analysis of the dependence of the induction periods on the initial solution conditions showed that the number of ions forming the critical nucleus was 5. The second-order dependence of the rate of precipitation of calcite on cellulose on the solution supersaturation suggested a surface controlled mechanism. The surface energy of the calcite nuclei growing on cellulose was calculated to be 46 mJ m(-2) from the dependence of the induction time on the solution supersaturation. The overgrowth of calcite on cellulose was done selectively on the macromolecules possibly through active sites formation at ionizable functional groups (-OH). The nucleating capability of cellulose was found to be comparable with that of sulfonated polystyrene and significantly lower in comparison with sulfonated polystyrene divinyl benzene copolymer on which vaterite was formed. This fact together with the selective growth of the most stable calcite suggested that stereochemical factors are very important in determining both the kinetics and the nature of the polymorph formed. Copyright 2000 Academic Press.  相似文献   

2.
The formation of barium sulfate in aqueous media causes problems of insoluble scale formation. On the other hand, the coprecipitation of uranium and transuranium elements with barium sulfate has been suggested for the determination of these elements in environmental monitoring processes. Therefore, the study of barium sulfate crystal growth is required. The investigations done so far suffer from the low sensitivity of the analytical methods used. In the present work we have overcome this problem by using131Ba for the preparation of supersaturated solutions. Thus kinetics parameters such as induction time and precipitation rates were measured. The polynuclear mechanism was found to be operative at high and the spiral growth at low supersaturations.  相似文献   

3.
The growth of crystals in solution   总被引:3,自引:0,他引:3  
The crystallization of sparingly soluble salts from their aqueous supersaturated solutions is discussed from the standpoint of two important applications; scale formation and biological mineralization. Theories of crystal growth are outlined and the importance of kinetic factors in determining the nature of the growing phases is discussed. The kinetic factors can be studied by using a highly reproducible seeded growth technique and under certain conditions secondary nucleation can also be induced on the surface of the inoculating seed crystals. The kinetics of crystallization of the alkaline earth surfaces and the calcium phosphates is discussed. In the latter systems, temperature, supersaturation, surface concentration, pH, ionic strength and the presence of foreign ions are important in determining the nature of the phase which grows on the added seed crystals. The mechanism of the retardation of crystal growth by added crystallization inhibitors is illustrated by the influence of organic phosphonate molecules upon the precipitation of calcium carbonate.  相似文献   

4.
We report observations of localized growth on the (1014) surface of single-crystal CaCO3 in supersaturated solutions while scanning with the tip of an atomic force microscope (AFM). At low contact forces, AFM scanning strongly enhances deposition along preexisting steps. This enhancement increases rapidly with increasing solution supersaturation, and is capable of filling in multilayer etch pits to produce defect-free surfaces at the resolution of the AFM. Attempts to achieve similar deposition rates in the absence of scanning require high supersaturations that produce three-dimensional crystal nuclei, which are important defects. Localized deposition produced by drawing the AFM tip back and forth across step edges can produce monolayer deposits extending well over a micron from the scanned area. These tip-induced deposits provide convincing evidence for the importance of ledge diffusion in calcite crystal growth.  相似文献   

5.
In the present work, copolymers of vinylphosphonic acid and 4-vinilyimidazole (poly(4-VIm-co-VPA)) were found to be substrates favoring the precipitation of nanohydroxyapatite (HAP) crystals from stable supersaturated solutions at pH 7.4 and 37 degrees C. Deposition kinetics were studied by the constant composition technique. The rates of crystallization both on HAP seed crystals as reference and on the copolymer in powder form were investigated at constant supersaturation conditions. The rates of HAP crystal growth on the polymeric substrate were found to depend on the amount of seed material and on the phosphate content of the copolymer.  相似文献   

6.
Many experimental reports for the kinetics of crystal nucleation and growth, from an isothermal solution, point to a sigmoidal-like behavior for the process. Here we consider three different nucleation models from the literature and show that all lead to sigmoidal or sigmoidal-like behavior for the kinetics of nucleation. A two-step nucleation process is known to occur within certain supersaturated protein solutions, and it is demonstrated in this report how the sigmoidal law yields kinetic information for the two-step and homogeneous nucleation modes. We propose here that two-step solute-rich associates form in the solution around seed nuclei that are already present at or near the point in time when the solution is prepared. Using this hypothesis, we are able to model the time-dependent volume of the two-step phase per unit volume of solution and show that this compares well with reported experimental data. A kinetic model is given for the proposed process, which leads to a sigmoidal rate law. Additionally, a relation between the initial and final nuclei densities and the induction time is derived. As a result of this study, the conclusion is that two-step activity increases with increasing initial supersaturation or increasing salt concentration.  相似文献   

7.
This paper analyzes the effect of mixing on nucleation of protein crystals. The mixing of protein and precipitant was controlled by changing the flow rate in a plug-based microfluidic system. The nucleation rate inversely depended on the flow rate, and flow rate could be used to control nucleation. For example, at higher supersaturations, precipitation happened at low flow rates while large crystals grew at high flow rates. Mixing at low flow velocities in a winding channel induces nucleation more effectively than mixing in straight channels. A qualitative scaling argument that relies on a number of assumptions is presented to understand the experimental results. In addition to helping fundamental understanding, this result may be used to control nucleation, using rapid chaotic mixing to eliminate formation of precipitates at high supersaturation and using slow chaotic mixing to induce nucleation at lower supersaturation.  相似文献   

8.
The crystallization of materials from a supersaturated solution is a fundamental chemical process. Although several very successful models that provide a qualitative understanding of the crystal growth process exist, in most cases the atomistic detail of crystal growth is not fully understood. In this work, molecular dynamics simulations of the morphologically most important surfaces of barite in contact with a supersaturated solution have been performed. The simulations show that an ordered and tightly bound layer of water molecules is present on the crystal surface. The approach of an ion to the surface requires desolvation of both the surface and the ion itself leading to an activated process that is rate limiting for two-dimensional nucleation to occur. However, desolvation on specific surfaces can be assisted by anions adsorbed on the crystal surface. This hypothesis, corroborated by crystallization and scanning electron microscopy studies, allows the rationalization of the morphology of barite crystals grown at different supersaturations.  相似文献   

9.
The crystallization kinetics and morphology of CaCO3 crystals precipitated from the high salinity oilfield water were studied. The crystallization kinetics measurements show that nucleation and nuclei growth obey the first order reaction kinetics. The induction period of precipitation is extended in the high salinity solutions. Morphological studies show that impurity ions remain mostly in the solution phase instead of filling the CaCO3 crystal lattice. The morphology of CaCO3 precipitates can be changed from a smooth surface (calcite) to rough spheres (vaterite), and spindle rod bundles, or spherical, ellipsoid, flowers, plates and other shapes (aragonite).  相似文献   

10.
The growth kinetics of colloidal Al(III)-containing particles (diameter<1000 nm), nucleated in optically clear, supersaturated sodium aluminate solutions as a precursor to Al(OH)(3) crystals, has been studied using dynamic light scattering. Two series of solutions were examined at 22 degrees C to determine the influence of Al(III) supersaturation and NaOH concentration on the initial particle growth behavior. One solution series consisted of solutions with constant Al(III) absolute supersaturation (DeltaC) of 1.48 M and [NaOH] range 1.83-4.00 M ([NaOH]/[Al(III)]=1.13-2.15) and Al(III) relative supersaturation (sigma)=3.86-10.36. The other solution series had a constant sigma of 7.55 and [NaOH] range of 1.50-4.27 M ([NaOH]/[Al(III)]=1.18-1.54) and DeltaC=0.86-3.19. The correlation between the initial particle growth rates and supersaturation (DeltaC or sigma) revealed marked anomalies over the entire supersaturation range studied. The growth rate remained substantially constant in the DeltaC range 0.86-2.55 M (for the constant sigma solution series), before increasing sharply upon a further increase of DeltaC beyond 2.55 M. The variation of the growth rate with sigma in the range 3.86-9.00 (for the constant DeltaC solution series) was remarkably weak, contrary to expectation. At higher sigma (>9.00), however, a marked increase in growth rate with increasing sigma was displayed. At constant DeltaC or sigma, the growth rate showed a strong variation with NaOH concentration, indicating that Na(+) and OH(-) species play a pivotal role in the Al(OH) precursor particles (nuclei) growth process. Furthermore, the kinetics of growth displayed by these nanosized particles are an order of magnitude slower than those observed for macroscopic gibbsite (gamma-Al(OH)(3)) crystals at similar supersaturations and temperature. The difference may be rationalized in terms of particle size and Al(OH)(3) dimorphic phase dependent solubility effects. An empirically adequate growth kinetics modeling was achieved when the growth rates were correlated with the Al(III) supersaturation (DeltaC or sigma) and the excess (free) NaOH concentration, rather than the former alone, as is commonly the case. A critical [NaOH]/[Al(III)] molar ratio of 1.27-1.35, below which the particle growth rate increased markedly and above which the rate was significantly reduced, was observed. This behavior is believed to be linked to solution speciation change that occurs at certain Al(III) and NaOH compositions.  相似文献   

11.
X-ray studies performed during the growth of CdCO(3) and MnCO(3) crystals from supersaturated aqueous solutions, at fatty acid monolayer templates, reveal that the nucleates are nearly three-dimensional powders below a threshold supersaturation. However, at higher supersaturations, the crystals are preferentially oriented with the {0 1 2} direction vertical. Scanning electron microscope images of samples transferred to substrates show discrete crystals at low concentrations, while at higher concentrations the crystals self-aggregate to form linear chains and sheets. The authors speculate that preferential alignment at the organic-inorganic interface is enhanced as a consequence of oriented aggregation of crystals. The role of monolayer-ion interactions in governing the morphologies and the resulting orientation of the inorganic nucleate is discussed.  相似文献   

12.
This review concentrates on the progress of modeling the nucleation process of particles by the balanced nucleation-growth (BNG) process. The BNG model will be compared with other models that try to predict material nucleation. Compared to other models, the BNG model allows quantifying the nucleation rate, maximum growth rate, and supersaturation during the nucleation period as a function of nucleation efficiency and maximum growth rate of the crystals. From this model, equations are derived that correlate the number of stable crystals formed with molar addition rate of reactants, solubility of the crystals, and temperature. The BNG model predicts the experimental result that many crystallization processes result in a limited number of crystals followed by growth. The model also predicts that factors like diffusion and kinetically controlled growth process, Ostwald ripening agents and growth restrainers control the crystal number. Equations are given for each of the variables that agree with experiments. The BNG model predicts the conditions for renucleation (formation of new crystals during precipitation). It leads to new equations for the prediction of crystal number and crystal size during controlled continuous precipitation in the continuous stirred tank reactor (CSTR) as a function of precipitation conditions.  相似文献   

13.
Investigation of basic interactions between the active pharmaceutical compounds and calcium carbonates is of great importance because of the possibility to use the carbonates as a mineral carrier in drug delivery systems. In this study the mode and extent of interactions of salicylic acid and its amino acid derivates, chosen as pharmaceutically relevant model compounds, with calcite crystals are described. Therefore, the crystal growth kinetics of well defined rhombohedral calcite seed crystals in the systems containing salicylic acid (SA), 5-amino salicylic acid (5-ASA), N-salicyloil-l-aspartic acid (N-Sal-Asp) or N-salicyloil-l-glutamic acid (N-Sal-Glu), were investigated. The precipitation systems were of relatively low initial supersaturation and of apparently neutral pH. The data on the crystal growth rate reductions in the presence of the applied salicylate molecules were analyzed by means of Cabrera & Vermileya's, and Kubota & Mullin's models of interactions of the dissolved additives and crystal surfaces. The crystal growth kinetic experiments were additionally supported with the appropriate electrokinetic, spectroscopic and adsorption measurements. The Langmuir adsorption constants were determined and they were found to be in a good correlation with values obtained from crystal growth kinetic analyses. The results indicated that salicylate molecules preferentially adsorb along the steps on the growing calcite surfaces. The values of average spacing between the adjacent salicylate adsorption active sites and the average distance between the neighboring adsorbed salicylate molecules were also estimated.  相似文献   

14.
The formation of crystalline nuclei from solution has been shown for many systems to occur in two steps: the formation of quasidroplets of a disordered intermediate, followed by the nucleation of ordered crystalline embryos within these droplets. The rate of each step depends on a respective free-energy barrier and on the growth rate of its near-critical clusters. We address experimentally the relative significance of the free-energy barriers and the kinetic factors for the nucleation of crystals from solution using a model protein system. We show that crystal nucleation is 8-10 orders of magnitude slower than the nucleation of dense liquid droplets, i.e., the second step is rate determining. We show that at supersaturations of three or four k(B)T units, crystal nuclei of five, four, or three molecules transform into single-molecule nuclei, i.e., the significant nucleation barrier vanishes below the thermal energy of the molecules. We show that the main factor, which determines the rate of crystal nucleation, is the slow growth of the near-critical ordered clusters within the quasidroplets of the disordered intermediate. Analogous to the spinodal in supersaturated fluids, we define a solution-to-crystal spinodal from the transition to single-molecule crystalline nuclei. We show that heterogeneous nucleation centers accelerate nucleation not only because of the wettinglike effects that lower the nucleation barrier, as envisioned by classical theory, but by helping the kinetics of growth of the ordered crystalline embryos.  相似文献   

15.
Amino acids provide useful foods, medicines, health foods, and nutritional supplements. We studied the morphology control of alanine, an amino acid. We also studied the effects of amino acid addition on the dispersion stability of gold nanoparticles. We then studied hybridization between alanine crystals and arginine-capped gold nanoparticles. Alanine crystal growth in a supersaturated alanine solution was found to increase linearly over time, and alanine crystal growth stopped as supersaturation decreased. Alanine crystals with arginine grew toward the c-axis because arginine was adsorbed onto the face (120) of alanine crystals. Absorption wavelengths of colloidal solutions changed for gold nanoparticles with arginine, suggesting that arginine was adsorbed onto gold nanoparticles. The change in alanine crystal morphology was the same for alanine crystals with arginine-capped gold nanoparticles in that it grew toward the c-axis. Alanine crystals contained arginine-capped gold nanoparticles toward the c-axis.  相似文献   

16.
Kinetic equations describing homogeneous nucleation kinetics within standard model are solved numerically under the condition of a constant number of molecules in the considered system. It has consequences to decrease the supersaturation of the supersaturated vapor during the process of the formation of small droplets of a new phase. The decrease of supersaturation occurs in a short time and reaches some value which remains unchanged for a relatively long time (quasistationary regime), especially at lower initial supersaturations. This time interval decreases with increasing value of the initial supersaturation. In the quasistationary regime the nucleation rate reaches its stationary value. At higher initial supersaturation, the rate of formation of nuclei goes to some maximum value corresponding to the stationary nucleation rate and then decreases with time due to the decrease of supersaturation.  相似文献   

17.
The influence of the primary structures of plant (Canavalia ensiformis) and bacterial (Bacillus pasteurii) ureases on the precipitation of calcium carbonate polymorphs in solutions of calcium salts and urea at room temperature was investigated. Despite a similar catalytic function in the decomposition of urea, these ureases exerted different influences on the crystal phase formation and on the development of unusual morphologies of calcium carbonate polymorphs. Spherical and uniform vaterite particles were precipitated rather than calcite in the presence of Bacillus urease, while the presence of Canavalia urease resulted in the precipitation of calcite only. Vaterite particles were shown to be built up of nanosized crystallites, proving the importance of nanoscale aggregation processes on the formation of colloidal carbonates. Reduction of the concentration of Bacillus urease in the reacting solution results in the formation of calcite crystals with a more complex surface morphology than the ones obtained by Canavalia urease. These differences may be explained by dissimilarities in the amino acid sequences of the two examined ureases and their different roles in nucleation and physicochemical interactions with the surface of the growing crystals, during the precipitation processes. This study exemplifies the diversity of proteins produced by different organisms for the same function, and the drastic effects of subtle differences in their primary structures on crystal phase formation and growth morphology of calcium carbonate precipitates, which occur as inorganic components in a large number of biogenic structures.  相似文献   

18.
A new technique is described to study the condensation of supersaturated vapors on nanoparticles under well-defined conditions of vapor supersaturation, temperature, and carrier gas pressure. The method is applied to the condensation of supersaturated trifluoroethanol (TFE) vapor on Mg nanoparticles. The nanoparticles can be activated to act as condensation nuclei at supersaturations significantly lower than those required for homogeneous nucleation. The number of activated nanoparticles increases with increasing the vapor supersaturation. The small difference observed in the number of droplets formed on positively and negatively charged nanoparticles is attributed to the difference in the mobilities of these nanoparticles. Therefore, no significant charge preference is observed for the condensation of TFE vapor on the Mg nanoparticles.  相似文献   

19.
电导法研究过饱和铝酸钠溶液均相成核过程   总被引:2,自引:0,他引:2  
采用自行研制电导在线跟踪仪, 配套特制的传感器式电导电极, 研究铝酸钠溶液均相成核过程中溶液电导变化规律, 及溶液过饱和度对反应诱导期作用; 通过测定铝酸钠溶液均相成核过程诱导期, 结合溶液均相成核理论, 测得323 K下, 饱和度S>3.8的铝酸钠溶液均相成核过程中的表观反应级数n=4±1, 固-液界面能γ=(40.6±2.0) mJ·m-2, 并据此估算临界成核粒径rc=(1.1±0.2) nm. 研究结果与文献值吻合, 证明该套仪器具有较高的灵敏度和可靠性.  相似文献   

20.
Calcium carbonate was precipitated from calcium hydroxide and carbonic acid solutions at 25 degrees C, with and without addition of different magnesium (MgSO(4), Mg(NO(3))(2) and MgCl(2)) and sodium salts (Na(2)SO(4), NaNO(3) and NaCl) of identical anions, in order to study the mode of incorporation of magnesium and inorganic anions and their effect on the morphology of calcite crystals over a range of initial reactant concentrations and limited c(i)(Mg(2+))/c(i)(Ca(2+)) molar ratios. The morphology, crystal size distribution, composition, structure, and specific surface area of the precipitated crystals, as well as the mode of cation and anion incorporation into the calcite crystal lattice, were studied by a combination of optical and scanning electron microscopy (SEM), electronic counting, a multiple BET method, thermogravimetry, FT-IR spectroscopy, X-ray diffraction (XRD), and electron paramagnetic resonance (EPR) spectroscopy. In the systems of high initial relative supersaturation, precipitation of an amorphous precursor phase preceded the formation of calcite, whereas in those of lower supersaturation calcite was the first and only polymorphic modification of calcium carbonate that appeared in the system. The magnesium content in calcite increased with the magnesium concentration in solution and was correlated with the type of magnesium salt used. Mg incorporation caused the formation of crystals elongated along the calcite c axis and, in some cases, the appearance of new [011] faces. Polycrystalline aggregates were formed when the c(i)(Mg(2+))/c(i)(Ca(2+)) molar ratios in solution were increased. Addition of sulfate ions, alone, caused formation of spherical calcite polycrystalline aggregates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号