首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A microreactor by immobilized trypsin on the activated glycidyl methacrylate-modified cellulose membrane packed column was constructed. Immobilized trypsin mirrored the properties of the free enzyme and showed high stability. A novel method to characterize the activity and reaction kinetics of the immobilized enzyme has been developed based on the frontal analysis of enzymatic reaction products, which was performed by the on-line monitoring of the absorption at 410 nm of p-nitroaniline from the hydrolysis of N-alpha-benzoyl-DL-arginine-p-nitroanilide (BAPNA). The hydrolytic activity of the immobilized enzyme was 55.6% of free trypsin. The apparent Michaelis-Menten kinetics constant (Km) and Vmax values measured by the frontal analysis method were, respectively, 0.12 mM and 0.079 mM min(-1) mg enzyme(-1). The former is very close to that observed by the static and off-line detection methods, but the latter is about 15% higher than that of the static method. Inhibition of the immobilized trypsin by addition of benzamidine into substrate solution has been studied by the frontal analysis method. The apparent Michaelis-Menten constant of BAPNA (Km), the inhibition constant of benzamidine (Ki) and Vmax were determined. It was indicated that the interaction of BAPNA and benzamidine with trypsin is competitive, the Km value was affected but the Vmax was unaffected by the benzamidine concentration.  相似文献   

2.
An electrophoretically mediated microanalysis method with a partial filling technique was developed for flavin-containing monooxygenase, form 3 (FMO3). The in-line enzymatic reaction was performed in 100 mM phosphate reaction buffer (pH 7.4) whereas 150 mM phosphate buffer (pH 3.3) was used as a background electrolyte. A long plug of cofactor NADPH dissolved in reaction buffer was hydrodynamically injected into a fused-silica capillary, followed by enzyme and substrate solution. The reaction was initiated at 37 degrees C in the thermostated part of the cartridge by the application of 9 kV for 0.9 min. The voltage was turned off to increase the product amount (zero-potential amplification) and again turned on at a constant voltage of 10 kV to elute all the components. Direct detection was performed at 191 nm. The developed electrophoretically mediated microanalysis method was applied for the kinetics study of FMO3 using clozapine as a substrate probe. A Michaelis-Menten constant (K(m)) of 410.3 microM was estimated from the corrected peak area of the product, clozapine N-oxide. The calculated value of the maximum reaction velocity (V(max)) was found to be 1.86 nmol/nmol enzyme/min. The acquired FMO3 kinetic parameters are in accordance with the published literature data.  相似文献   

3.
We explore ion-specific effects exerted by ionic liquids (ILs) on the enzyme kinetics of yeast alcohol dehydrogenase. The Michaelis-Menten reaction scheme is used to parameterize the observed kinetics in terms of the apparent dissociation constant of the substrate (Michaelis-Menten constant) K(M), the turnover number k(cat), which reflects the number of product molecules per enzyme molecule per second, and the enzymatic efficiency k(cat)/K(M) of the reaction. Results for fifteen salts are used to deduce Hofmeister anion and cation series. The ion rankings derived from K(M), k(cat) and k(cat)/K(M) differ markedly. Only the results for the enzymatic efficiency correspond to expectations from other phenomena, such as the thermal stability of native proteins. Anion variation has a significantly larger effect on the enzymatic efficiency than cation variation. All ILs decrease k(cat) relative to its value for the IL-free solution, thus driving enzyme deactivation. Enhancements of the enzymatic efficiency by some ions are founded in their effects on the Michaelis-Menten constant. The observed Hofmeister anion and cation series point toward hydrophobic interactions as an important factor controlling ion-specific effects on the enzymatic activity.  相似文献   

4.
Qiao J  Qi L  Mu X  Chen Y 《The Analyst》2011,136(10):2077-2083
The study of enzyme immobilization using an extracorporeal shunt system is essential to eliminate the side effects of L-asparaginase (L-Asnase; including hepatic toxicity, allergic reaction, pancreatitis, central nervous system toxicity and decreased synthesis of blood clotting factors) when it was applied as an anticancer drug given directly to patients by injection. Thus, the novel monolith and coating enzymatic reactors of L-asparaginase were provided in this assay and a microchip electrophoresis-laser induced fluorescence (MCE-LIF) method was set up for the enzyme kinetics study. The enzymatic reactors would be a promising in vitro therapeutic method in an extracorporeal shunt system for acute lymphoblastic leukemia (ALL) treatment. For the first time, L-asparaginase was covalently bound to the polymer monolith and coating in the capillary and the activity characteristics of these enzymatic microreactors have been probed by Michaelis-Menten kinetic constants. Meanwhile, the D,L-amino acids were chirally separated using microchip electrophoresis with a laser induced detector and D,L-aspartic acid (D,L-Asp) were tested for the L-asparaginase enzymatic reactor kinetics study. Furthermore, human serum adding with L-asparagine (L-Asn) as the sample was hydrolyzed by the enzymatic microreactors. The results demonstrated that the developed enzymatic microreactor of L-asparaginase would be a potential therapeutic protocol for ALL treatment.  相似文献   

5.
Microencapsulation is used here as a new technique to immobilize enzymes in a microreactor coupled off-line to capillary electrophoresis (CE), allowing the determination of enzymatic reaction products. The redox enzyme laccase was encapsulated using the method of interfacial cross-linking of poly(ethyleneimine) (PEI). The 50 μm diameter capsules were slurry packed from a suspension into a capillary-sized reactor made easily and quickly from a short length of 530 μm diameter fused-silica tubing. The volume of the bed of laccase microcapsules in the microreactor was in the order of 1.1 μL through which 50 μL of the substrate o-phenylenediamine (OPD) was flowed. The oxidation product 2,3-diaminophenazine (DAP) and the remaining OPD were quantified by CE in a pH 2.5 phosphate buffer. Peak migration time reproducibility was in the order of 0.4% RSD and peak area reproducibility was less than 1.7% RSD within the same day. Using the OPD peak area calibration curve, a conversion efficiency of 48% was achieved for a 2-min oxidation reaction in the microreactor.  相似文献   

6.
Shi J  Zhao W  Chen Y  Guo L  Yang L 《Electrophoresis》2012,33(14):2145-2151
A novel replaceable dual-enzyme capillary microreactor was developed and evaluated using magnetic fields to immobilize the alcohol dehydrogenase (ADH)- and lactate dehydrogenase (LDH)-coated magnetic beads at desired positions in the capillary. The dual-enzyme assay was achieved by measuring the two consumption peaks of the coenzyme β-nicotinamide adenine dinucleotide (NADH), which were related to the ADH reaction and LDH reaction. The dual-enzyme capillary microreactor was constructed using magnetic beads without any modification of the inner surface of the capillary, and showed great stability and reproducibility. The electrophoretic resolution for different analytes can be easily controlled by altering the relative distance of different enzyme-coated magnetic beads. The apparent K(m) values for acetaldehyde with ADH-catalyzed reaction and for pyruvate with LDH-catalyzed reaction were determined. The detection limits for acetaldehyde and pyruvate determination are 0.01 and 0.016 mM (S/N = 3), respectively. The proposed method was successfully applied to simultaneously determine the acetaldehyde and pyruvate contents in beer samples. The results indicated that combing magnetic beads with CE is of great value to perform replaceable and controllable multienzyme capillary microreactor for investigation of a series of enzyme reactions and determination of multisubstrates.  相似文献   

7.
An electrophoretically mediated microanalysis method for the determination of CYP3A4 activity using testosterone and nifedipine as substrates was developed. Initially, the enzymatic reaction was performed off-line and the samples were subsequently injected into the capillary by pressure. The CYP3A4 activity was determined by quantitation of the reactant cofactor, NADPH. To further optimize, speed-up and miniaturize the enzyme assay, the enzymatic reaction was performed directly in the capillary, prior to separation and quantitation of the product cofactor, NADP, employing the plug-plug mode of electrophoretically mediated microanalysis. An amplification step was introduced by means of an on-capillary incubation of 15 min, in order to accumulate enough reaction product to detect spectrophotometrically at 260 nm. This setup resulted in a fully automated assay, which can be carried out in less than 35 min. Using the Lineweaver-Burk equation, the Michaelis constants (K(m)) for the oxidation of testosterone and nifedipine by CYP3A4 were calculated to be 58.6+/-8.3 and 19.1+/-2.4 microM, respectively, which are consistent with off-line assay and previously reported values.  相似文献   

8.
Yu J  Yu D  Zhao T  Zeng B 《Talanta》2008,74(5):1586-1591
Pt nanoparticles were deposited on mesoporous carbon material CMK-3. Glucose oxidase (GOx) was immobilized in the resulting Pt nanoparticles/mesoporous carbon (Pt/CMK-3) matrix, and then the mixture was cast on a glassy carbon electrode (GCE) using gelatin as a binder. The glucose biosensor exhibited excellent current response to glucose after cross-linking with glutaraldehyde. At 0.6V (vs. SCE) the response current was linear to glucose concentration in the range of 0.04-12.2mM. The response time (time for achieving 95% of the maximum current) was 15s and the detection limit (S/N=3) was 1 microM. The Michaelis-Menten constant (K(m)(app)) and the maximum current density (i(max)) were 10.8 mM and 908 microAcm(-2), respectively. The activation energy of the enzymatic reaction was estimated to be 22.54 kJ mol(-1). The biosensor showed good stability. It achieved the maximum response current at about 52 degrees C and retained 95.1% of its initial response current after being stored for 30 days. In addition, some fabrication and operation parameters for the biosensor were optimized in this work. The biosensor was used to monitor the glucose levels of serum samples after being covered with an extra Nafion film to improve its anti-interferent ability and satisfied results were obtained.  相似文献   

9.
The reliability of kinetic substrate quantification by nonlinear fitting of the enzyme reaction curve to the integrated Michaelis-Menten equation was investigated by both simulation and preliminary experimentation. For simulation, product absorptivity epsilon was 3.00 mmol(-1) L cm(-1) and K(m) was 0.10 mmol L(-1), and uniform absorbance error sigma was randomly inserted into the error-free reaction curve of product absorbance A(i) versus reaction time t(i) calculated according to the integrated Michaelis-Menten equation. The experimental reaction curve of arylesterase acting on phenyl acetate was monitored by phenol absorbance at 270 nm. Maximal product absorbance A(m) was predicted by nonlinear fitting of the reaction curve to Eq. (1) with K(m) as constant. There were unique A(m) for best fitting of both the simulated and experimental reaction curves. Neither the error in reaction origin nor the variation of enzyme activity changed the background-corrected value of A(m). But the range of data under analysis, the background absorbance, and absorbance error sigma had an effect. By simulation, A(m) from 0.150 to 3.600 was predicted with reliability and linear response to substrate concentration when there was 80% consumption of substrate at sigma of 0.001. Restriction of absorbance to 0.700 enabled A(m) up to 1.800 to be predicted at sigma of 0.001. Detection limit reached A(m) of 0.090 at sigma of 0.001. By experimentation, the reproducibility was 4.6% at substrate concentration twice the K(m), and A(m) linearly responded to phenyl acetate with consistent absorptivity for phenol, and upper limit about twice the maximum of experimental absorbance. These results supported the reliability of this new kinetic method for enzymatic analysis with enhanced upper limit and precision.  相似文献   

10.
11.
The properties of glucose biosensors based on dendrimer layers on a gold support, which depend on the method of immobilization of glucose oxidase (GOX), were studied by amperometry. The kinetic parameters of enzymatic reactions, response time, sensitivity, detection limit, linear range, and enzyme turnover were determined. We showed that a more stable and sensitive sensor was obtained when GOX was immobilized on the dendrimer by crosslinking with glutaraldehyde in vacuum. This biosensor was stable for at least eight weeks. The response time was approximately 1.3 min, the detection limit of glucose was 25 micro M, and the apparent Michaelis-Menten constant was relative low ( K(m)=1.1+/-0.1 mM) in comparison with that for GOX in solution. The reason for these differences is discussed. The example of the application of the developed biosensors for the detection of mercury is also presented. The inhibitory effect of mercury on GOX activity was observed at mercury concentration of 100 nM.  相似文献   

12.
《Analytical letters》2012,45(2):258-265
Electrogravimetric analysis was performed on the consumption of the neurotransmitter Acetylcholine (ACh) by Acetylcholinesterase (AChE) in situ and in real time. Michaelis-Menten assumption was achieved by using an enzyme micro-reactor in which the total enzyme was anchored in a quartz crystal microbalance chip (QCM-chip) with a strategically engineered self-assembled monolayer (SAM) of alkanethiols, which can prevent diffusion-controlled or spatially restricted kinetics. The real-time frequency changes indicated the rate of the products formation from enzymatic reaction. The QCM-chip was tested showing that it could demonstrate AChE inhibition by physostigmine.  相似文献   

13.
The kinetics of exoglucanase (Cel7A) from Trichoderma reesei was investigated in the presence of cellobiose and 24 different enzyme/Avicel ratios for 47 h, in order to establish which of the eight available kinetic models best explained the factors involved. The heterogeneous catalysis was studied and the kinetic parameters were estimated employing integrated forms of Michaelis-Menten equations through the use of nonlinear least squares. It was found that cellulose hydrolysis follows a model that takes into account competitive inhibition by cellobiose (final product) with the following parameters: Km = 3.8 mM, Kic = 0.041 mM, kcat = 2 h-1 (5.6 x 10-4 s-1). Other models, such as mixed type inhibition and those incorporating improvements concerning inhibition by substrate and parabolic inhibition, increased the modulation performance very slightly. The results support the hypothesis that nonproductive enzyme substrate complexes, parabolic inhibition, and enzyme inactivation (Selwyn test) are not the principal constraints in enzymatic cellulose hydrolysis. Under our conditions, the increment in hydrolysis was not significant for substrate/enzyme ratios <6.5.  相似文献   

14.
生物功能电极 III. 葡萄糖氧化酶的电化学固定化研究   总被引:5,自引:4,他引:5  
利用磷酸盐缓冲溶液中吡咯的电聚合, 将葡萄糖氧化酶(GOD)包埋在聚吡咯(PPy)基质中以构成生物功能电极。讨论了溶液pH和聚合电位对酶固定化的影响, 并用IR和交流阻抗谱对酶膜进行表征。GOD的固定化只有当pH>5.5时才能实现, 由此推测酶是以带负电的粒子嵌入PPy的。交流阻抗谱表明这一电极具有有界多孔电极的特征。探索了酶与电子传递体Fe(CN)_6~(3-)同时固定化的可行性。电化学固定化的GOD保持其生物催化活性, 酶反应表观上遵循Michealis-Menten动力学。  相似文献   

15.
利用磷酸盐缓冲溶液中吡咯的电聚合,将葡萄糖氧化酶(GOD)包埋在聚吡咯(PPy)基质中以构成生物功能电极。讨论了溶液pH和聚合电位对酶固定化的影响,并用IR和交流阻抗谱对酶膜进行表征。GOD的固定化只有当pH>5.5时才能实现,由此推测酶是以带负电的粒子嵌入PPy的。交流阻抗谱表明这一电极具有有界多孔电极的特征。探索了酶与电子传递体Fe(CN)_6~(3-)同时固定化的可行性。电化学固定化的GOD保持其生物催化活性,酶反应表观上遵循Michealis-Menten动力学。  相似文献   

16.
This paper summarizes our present theoretical understanding of single-molecule kinetics associated with the Michaelis-Menten mechanism of enzymatic reactions. Single-molecule enzymatic turnover experiments typically measure the probability density f(t) of the stochastic waiting time t for individual turnovers. While f(t) can be reconciled with ensemble kinetics, it contains more information than the ensemble data; in particular, it provides crucial information on dynamic disorder, the apparent fluctuation of the catalytic rates due to the interconversion among the enzyme's conformers with different catalytic rate constants. In the presence of dynamic disorder, f(t) exhibits a highly stretched multiexponential decay at high substrate concentrations and a monoexponential decay at low substrate concentrations. We derive a single-molecule Michaelis-Menten equation for the reciprocal of the first moment of f(t), 1/, which shows a hyperbolic dependence on the substrate concentration [S], similar to the ensemble enzymatic velocity. We prove that this single-molecule Michaelis-Menten equation holds under many conditions, in particular when the intercoversion rates among different enzyme conformers are slower than the catalytic rate. However, unlike the conventional interpretation, the apparent catalytic rate constant and the apparent Michaelis constant in this single-molecule Michaelis-Menten equation are complicated functions of the catalytic rate constants of individual conformers. We also suggest that the randomness parameter r, defined as <(t - )2> / t2, can serve as an indicator for dynamic disorder in the catalytic step of the enzymatic reaction, as it becomes larger than unity at high substrate concentrations in the presence of dynamic disorder.  相似文献   

17.
The homogeneous reaction between glucose oxidase and osmium bipyridine-pyridine carboxylic acid in the presence of glucose has been studied in detail by cyclic voltammetry and digital simulation. Combination of the analytical equations that describe the dependence of the amperometric response on enzyme, substrate and co-substrate concentrations for the limiting cases with digital simulation of the coupled enzyme reaction diffusion problem allows us to extract kinetic parameters for the substrate-enzyme reaction: K(MS)=10.8 mM, k(cat)=254 s(-1) and for the redox mediator-enzyme reaction, k=2.2x10(5) M(-1) s(-1). The accurate determination of the kinetic parameters at low substrate concentrations (<7 mM) is limited by depletion of the substrate close to the electrode surface. At high substrate concentrations (>20 mM) inactivation of the reduced form of glucose oxidase in the bulk solution must be taken into account in the analysis of the results.  相似文献   

18.
We demonstrate here that the electrochemical generation of hydroxyl ions and hydrogen bubbles can be used to induce the synthesis of enzyme- or protein-encapsulated 3D porous silica structure on the surface of noble metal electrodes. In the present work, the one-step synthesis of a glucose oxidase (GOD)-encapsulated silica matrix on a platinum electrode is presented. In this process, glucose oxidase was mixed with ethanol and TEOS to form a doped precursory sol solution. The electrochemically generated hydrogen bubbles at negative potentials assisted the formation of the porous structure of a GOD-encapsulated silica gel, and then the one-step immobilization of enzyme into the silica matrix was achieved. Scanning electron microscopy (SEM) and scanning electrochemical microscopy (SECM) characterizations showed that the GOD-encapsulated silica matrix adhered to the electrode surface effectively and had an interconnected porous structure. Because the pores started at the electrode surface, their sizes increased gradually along the distance away from the electrode and reached maximum at the solution side, and effective mass transport to the electrode surface could be achieved. The entrapped enzyme in the silica matrix retained its activity. The present glucose biosensor had a short response time of 2 s and showed a linear response to glucose from 0 to 10 mM with a correlation coefficient of 0.9932. The detection limit was estimated to be 0.01 mM at a signal-to-noise ratio of 3. The apparent Michaelis-Menten constant (K m app) and the maximum current density were determined to be 20.3 mM and 112.4 microA cm-2, respectively. The present method offers a facile way to fabricate biosensors and bioelectronic devices in situ.  相似文献   

19.
Nonspecific acid phosphatases share a conserved active site with mammalian glucose-6-phosphatases (G6Pase). In this work we examined the kinetics of the phosphorylation of glucose and dephosphorylation of glucose-6-phosphate (G6P) catalysed by the acid phosphatases from Shigella flexneri (PhoN-Sf) and Salmonella enterica (PhoN-Se). PhoN-Sf is able to phosphorylate glucose regiospecifically to G6P, glucose-1-phosphate is not formed. The K(m) for glucose using pyrophosphate (PPi) as a phosphate donor is 5.3 mM at pH 6.0. This value is not significantly affected by pH in the pH region 4-6. The K(m) value for G6P by contrast is much lower (0.02 mM). Our experiments show these bacterial acid phosphatases form a good model for G6Pase. We also studied the phosphorylation of inosine to inosine monophosphate (IMP) using PPi as the phosphate donor. PhoN-Sf regiospecifically phosphorylates inosine to inosine-5'-monophosphate whereas PhoN-Se produces both 5'IMP and 3'IMP. The data show that during catalysis an activated phospho-enzyme intermediate is formed that is able to transfer its phosphate group to water, glucose or inosine. A general mechanism is presented of the phosphorylation and dephosphorylation reaction catalysed by the acid phosphatases. Considering the nature of the substrates that are phosphorylated it is likely that this class of enzyme is able to phosphorylate a wide range of hydroxy compounds.  相似文献   

20.
羧甲基纤维素水凝胶生物降解动力学研究   总被引:4,自引:0,他引:4  
用氯化铝对羧甲基纤维素进行交联,制得了水凝胶.考察了底物浓度、酶浓度以及降解温度对该水凝胶降解速率的影响,探讨了酶降解动力学及“表观”活化能对酶浓度的依赖关系.结果表明,该酶促反应最佳温度为37 ℃,降解反应对底物浓度和酶浓度的反应级数分别为1级和1.2级;得到了与传统的Michaelis-Menten动力学机制不同的非均相酶促反应动力学模型,确定了“表观”活化能与酶浓度之间的定量关系.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号