首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Different compositions of GexAs10Te90−x (x=5, 10, 15, 20, and 25 at%) chalcogenide glasses were prepared by the usual melt quench technique. Amorphous GexAs10Te90−x thin films were deposited onto cleaned glass substrates using the thermal evaporation method. Transmission spectra, T(λ), of the films at normal incidence were measured in the wavelength range 400-2500 nm. A straightforward analysis proposed by Swanepoel based on the use of the maxima and minima of the interference fringes has been used to drive the film thickness, d, the complex index of refraction, n, and the extinction coefficient, k. It was found that, the addition of Ge content at the expense of Te atoms shifts the optical band gap to the short wavelength side (blue shift of the optical band gap) while the refractive index are found to decreases. The obtained results of the refractive index were discussed in terms of the electronic polarizability and the single-oscillator Wemple and DiDomenico model (WDD). The optical absorption is due to the allowed non-direct optical transitions. The observed increase in the optical band gap with the increase in Ge content was discussed in terms of the width of the tail states in the gap and the covalent bond approach.  相似文献   

2.
The temperature dependence of the electrical resistance of thin chromium films produced by vacuum condensation at 1· 10–4 mm Hg on mica, optical glass, and rock salt substrates is considered. The electrical resistance of chromium films condensed on substrates heated to temperatures below 450 °C increases irreversibly on subsequent heating and cooling. Chromium films condensed on substrates heated to 500–600 °C, however, retain stable electrical properties on repeatedly heating and cooling.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii Fizika, No. 9, pp. 56–60, September, 1971.  相似文献   

3.
Thin films of InSe were prepared by thermal evaporation technique. The as-deposited films have nano-scale crystalline nature and the annealing enhanced the degree of crystallinity. The optical properties of nanocrystalline thin films of InSe were studied using spectrophotometric measurements of transmittance, T, and reflectance, R, at normal incidence of light in the wavelength range 200–2500 nm. The optical constants (refractive index, n, and absorption index, k) were calculated using a computer program based on Murmann's exact equations. The calculated optical constants are independent of the film thickness. The optical dispersion parameters have been analysed by single oscillator model. The type of transition in InSe films is indirect allowed with a value of energy gap equals to 1.10 eV, which increased to 1.23 eV upon annealing.  相似文献   

4.
Thin films of stannous oxide (SnO) have been prepared by the electron-beam evaporation method. Film properties, such as refractive indexn, extinction indexk, and absorption coefficient, were studied in the wavelength range between 200 nm and 2 000 nm with different methods. The surface roughness of SnO thin films has been found to depend linearly on the film thickness in the range 400 <d < 2 000 nm. The optical transition in SnO thin films shows direct transition corresponding to an optical gap of 2.85 eV.  相似文献   

5.
The substrate temperature(T_s)and N_2 partial pressure(P_(N2))dependent optical and electrical properties of sputtered InGaZnON thin films are studied.With the increased T_s and P_(N2),the thin film becomes more crystallized and nitrified.The Hall mobility,free carrier concentration(Ne),and electrical conductivity increase with the lowered interfacial potential barrier during crystal growing.The photoluminescence(PL)intensity decreases with the increased Ne.The band gap(Eg)narrows and the linear refractive index(n1)increases with the increasing concentration of N in the thin films.The Stokes shift between the PL peak and absorption edge decreases with Eg.The n1,dispersion energy,average oscillator wavelength,and oscillator length strength all increase with n1.The single oscillator energy decreases with n1.The nonlinear refractive index and third order optical susceptibility increase with n1.The Seebeck coefficient,electron effective mass,mean free path,scattering time,and plasma energy are all Ne dependent.  相似文献   

6.
The properties of neodymium-doped BiFeO3 nanosized films on magnesium oxide single-crystal substrates are studied. The films are obtained using high-frequency sputtering with the aid of layered growth. The structural perfection of the films is analyzed using the X-ray diffraction. The transmission of the films with different thicknesses is studied in the wavelength interval 200–1100 nm. The spectra are processed with the aid of a dispersion formula for permittivity of a sum of oscillators with allowance for damping, so that direct and indirect transitions can be revealed. The absorption edges are estimated to be 2.81 and 2.78 eV for the direct transitions of the films with thicknesses of 14 and 60 nm, respectively.  相似文献   

7.
M.M. Wind  J. Vlieger 《Physica A》1984,125(1):75-104
A general theory, of second order in the film thickness and surface roughness over the wavelength, is developed of the optical properties of a thin film. These properties are described by a small number of electromagnetic constitutive coefficients. Formulae for these coefficients are derived in terms of the height-height correlation functions of the upper and lower surfaces of the film, and its average thickness. The reflectance, transmittance and ellipsometric coefficient are expressed in terms of the constitutive coefficients, for arbituary angles of incidence.  相似文献   

8.
Optical properties of epitaxial BiFeO3 thin films grown via pulsed-laser deposition on (110) DyScO3 substrates have been investigated. Their near-normal spectroscopic reflectivity was measured in the spectral range 2 to 14 eV at room temperature, while spectroscopic ellipsometry in the spectral range 1–6 eV was measured in the temperature range from 300 to 775 K. The optical response functions have been calculated and a direct optical gap was determined varying from 2.75 to 2.70 eV in this temperature range.  相似文献   

9.
Thin films of diindenoperylene deposited on weakly interacting substrates (quartz) are characterized with scanning probe microscopy techniques at room temperature and by pico-second time-resolved fluorescence spectroscopy between 5 and 300 K. Pronounced T-dependencies of fluorescence spectra and decays are found. The interplay between two fluorescence series in a narrow temperature range has been spectrally and temporally resolved. The possible origin of the observed series, competing energy transfer and quenching processes is discussed.  相似文献   

10.
The iron silicides samples were prepared by annealing of iron films evaporated onto silicon wafers and capped with amorphous silicon thin overlayers. Semiconducting FeSi2 phase is formed by annealing at the temperatures from 550°C to 850°C. The optical properties of the FeSi2 layers have been deduced from reflectance and transmittance measurements carried out in the temperature range of (77–380) K. The spectral dependence of the absorption coefficient favours direct allowed transitions with forbidden energy gap of 0.87eV at the room temperature. The application of a simple three-parameter semiempirical formula to the temperature dependence of the direct energy gaps leads to the following best fit parameters: the band gap at zero temperature E g (0) = (0.895 ± 0.004)eV, the dimensionless coupling parameter S = 2.0 ± 0.3, and the average phonon energy <hw> = (46 ± 8)meV. By examining all the reported triplets of parameters for -FeSi2 fabricated by different techniques and thermal processes, an obvious discrepancy can be found for the lattice coupling parameter and average phonon energy, although the bandgaps at 0 K are very similar. Unlike the theoretical prediction and the earlier reported result, our results do not show any evidence of a particularly strong electron-phonon interaction, which would give the lower carrier mobilities. -FeSi2 seems to be an intriguing material where states with energies near the band edges permit ambiguous interpretation of the character of transitions. From optical model for the thin film-substrate system we found the index of refraction to be (5–5.9) in the photon energy interval from 0.65 to 1.15eV. There is also indication of an additional higher-energy absorption edge at l.05eV.  相似文献   

11.
采用分子束外延的方法在BaF2(111)衬底上制备出了高质量的Pb1-xMnxSe(0≤x≤0.0681)薄膜.X射线衍射结果表明,Pb1-xMnxSe薄膜为立方相NaCl型结构,没有观察到MnSe相分离现象,薄膜的取向为平行于衬底(111)晶面.晶格常数随着Mn含量的增加逐渐减小,Mn含量由Vegard公式得到.通 关键词: 1-xMnxSe外延薄膜')" href="#">Pb1-xMnxSe外延薄膜 透射光谱 带隙 折射率  相似文献   

12.
金属银极薄薄膜的光学特性   总被引:4,自引:2,他引:2  
本文根据可见光区域测量的不同厚度,不同稳定情况下Ag膜透过率光谱响应曲线,结合岛状金属膜有效介质理论,讨论了Ag膜中类自由电子和束缚电子引起的等效洛伦兹振子和带间跃迁随厚度和稳定时间的变化规律。理论计算的透过率曲线与实验符合得很好。比较理论与实验,得到了不同厚度下、不同稳定情况Ag膜的光学常数。  相似文献   

13.
The measurement of reflection and transmission of normally incident light to obtain the optical constants of a material is a usual tool in solid-state spectroscopy. If the material under investigation is a thin film, the interaction of the electromagnetic field with the sample can be enhanced by oblique incidence. If the light is p-polarized, structures in the reflection and transmission spectra are observed at the frequencies of transverse (TO) and longitudinal (LO) resonances. The LO structure — called the Berreman effect — is generated by the surface charges due to the normal component of the electric field. We discuss this effect for three cases: a free film, a film with a metallic back and a substrate with thin films on both sides. The dependence of the effect on the energy-loss function Im {–1/} and on the film thickness is discussed. For idealized systems simple formulae are derived and a characteristic parameter, called the Berreman thickness, is obtained. Films of this thickness show a maximum effect. Intuitive arguments are given to explain the effect. Examples for the application of the Berreman effect to characterize very thin films are discussed.  相似文献   

14.
The optical constants (the refractive index n, the absorption index k, and the absorption coefficient ) of CdIn2Se4 thin films were determined in the spectral range of 500–2000 nm. Graphical representation of log() as a function of log(1/) shows two distinct, linear parts indicating the existance of both direct and indirect optical transitions. The corresponding forbidden energy gaps E g d and E g Emphasis>d were determined. The effect of both annealing temperature as well as the substrate temperature on the optical constants of CdIn2Se4 thin films was also investigated.  相似文献   

15.
Absorption and reflection of electromagnetic radiation by a composite thin film consisting of a transparent dielectric matrix with inclusions of metal nanoparticles of radius much less than the wavelength were theoretically investigated based on the Maxwell–Garnett model. The absorption, reflection, and transmission of optical radiation in such a dielectric composite film were analyzed using effective optical parameters for the refractive index and absorption coefficient that depended on the nanoparticle size.  相似文献   

16.
17.
Optical properties of Al-doped ZnO thin films by ellipsometry   总被引:1,自引:0,他引:1  
Al-doped ZnO thin films (AZO) were prepared on Si (1 0 0) substrates by using sub-molecule doping technique. The Al content was controlled by varying Al sputtering time. The as-prepared samples were annealed in vacuum chamber at 800 °C for 30 min. From the XRD observations, it is found that all films exhibit only the (0 0 2) peak, suggesting that they have c-axis preferred orientation. The average transmittance of the visible light is above 80%. Spectroscopic ellipsometry was used to extract the optical constants of the films. The absorption coefficient and the energy gap were then calculated. The results show that the absorption edge initially blue-shifts and then red-shifts with increase of Al content.  相似文献   

18.
19.
The chromium and titanium oxynitride films on glass substrate were deposited by using reactive RF magnetron sputtering in the present work. The structural and optical properties of the chromium and titanium oxynitride films as a function of power variations are investigated. The chromium oxynitride films are crystalline even at low power of Cr target (≥60 W) but the titanium oxynitride films are amorphous at low target power of Ti target (≤90 W) as observed from glancing incidence X-ray diffraction (GIXRD) patterns. The residual stress and strain of the chromium oxynitride films are calculated by sin2 ψ method, as the average crystallite size decreases with the increase in sputtering power of the Cr target, higher stress and strain values are observed. The chromium oxynitride films changes from hydrophilic to hydrophobic with the increase of contact angle value from 86.4° to 94.1°, but the deposited titanium oxynitride films are hydrophilic as observed from contact angle measurements. The changes in surface energy were calculated using contact angle measurements to substantiate the hydrophobic properties of the films. UV-vis and NIR spectrophotometer were used to obtain the transmission and absorption spectra, and the later was used for determining band gap values of the films, respectively. The refractive index of chromium and titanium oxynitride films increases with film packing density due to formation of crystalline chromium and titanium oxynitride films with the gradual rise in deposition rate as a result of increase in target powers.  相似文献   

20.
Bismuth trioxide (Bi2O3) thin films were prepared by dry thermal oxidation of metallic bismuth films deposited by vacuum evaporation. The oxidation process of Bi films consists of a heating from the room temperature to an oxidation temperature (To = 673 K), with a temperature rate of 8 K/min; an annealing for 1 h at oxidation temperature and, finally, a cooling to room temperature. The optical transmission and reflection spectra of the films were studied in spectral domains ranged between 300 nm and 1700 nm, for the transmission coefficient, and between 380 nm and 1050 nm for the reflection coefficient, respectively. The thin-film surface structures of the metal/oxide/metal type were used for the study of the static current-voltage (I-U) characteristics. The temperature of the substrate during bismuth deposition strongly influences both the optical and the electrical properties of the oxidized films. For lower values of intensity of electric field (ξ < 5 × 104V/cm), I-U characteristics are ohmic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号