首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Al Kα excited M4,5N4,5N4,5 Auger spectrum of Ba has been measured from the metallic sample evaporated on a Ag substrate. The spectrum has been decomposed into individual line components after the background subtraction. The decomposed spectrum has been compared with the theoretical spectrum calculated for the 4d?2 final state configuration in the mixed coupling scheme applying jj-coupling for the initial state and intermediate coupling for the final state. The most prominent structure of the spectrum shows the two 4d-hole coupling, but the structure which is caused by the Auger transitions M,45N2,3V has also been observed. The screening of the core holes in Ba metal seems to be produced by (5d6s) electrons. The simple excited atom model HF-calculations give an Auger kinetic energy shift (metal-free atom) of 16.7 eV, which is comparable to the experimental value 14–18 eV.  相似文献   

2.
TheK-absorption spectrum of nickel charged with hydrogen has been investigated using a Bragg spectrograph with photographic registration. The fine structure of the absorption edge of the nickel hydride as compared with that of nickel shows that the electrons of the dissolved hydrogen fill up the empty 3d- and 4s-states of the conduction band of the metal.  相似文献   

3.
The hyperfine structure of the (3(d 4s)1 D 2metastable state of43Ca has been measured using theABMR-LIRF method (atomic beam magnetic resonance, detected by laser induced resonance fluorescence). The measurements yielded for the magnetic dipole and electric quadrupole constantsA=?17.650(2) MHz andB=?4.642(12) MHz, respectively. From the measuredB factor the spectroscopic electric quadrupole moment (uncorrected for shielding effects) has been calculated to beQ(43Ca)=?0.062(12) barn. In addition, isotope shifts in the lines (3d 4s)1 D 2(3d 4p)1 F 3 0 and (3d 4s)1 D 2(4s 5p)1 p 1 0 for the stable calcium isotopes have been obtained by high resolution laser spectroscopy.  相似文献   

4.
A self-consistent approach to calculations of the electronic structure and the magnetic susceptibility of nearly magnetic metals, such as palladium and platinum, has been developed in terms of the generalized s(p)d Hubbard model. The energy band structure has been calculated using the ab initio LDA + U + SO method with the additional inclusion of the interstitial s(p)d exchange interaction and spin-fluctuation renormalizations of the electronic spectra, which appear at finite temperatures. The developed approach makes it possible to quantitatively describe the density of states and unusual temperature dependences of the magnetic susceptibility of the nearly magnetic metals under consideration and to evaluate the basic parameters of the electron-electron interactions. The role of the spin-orbit interaction in the formation of the electronic and magnetic properties is enhanced when going from palladium (4d period) to platinum (5d period). The effects of the temperature redistribution of electrons between the s(p) and d states have been revealed.  相似文献   

5.
The paper consists of two parts. (1) The author studied the mechanism of the appearance of the double discontinuities of wide separation in the X-ray L1 absorption spectrum of Mo in MoO3, which were found in the recent research about the effects of chemical combination on various X-ray absorption limits, and that of Nb in Nb2O5. Then he arrived at the conclusion that the discontinuity of the higher energy corresponds to the electronic transition from L1 to 5p, and that of the lower energy is attributed to that from L1 to the 4d, 5s state. (2) The author applied the explanation to the double discontinuities which have been observed by many researchers in the K absorption spectra of 3d transition elements in highly oxidized compounds, and showed that these double absorption discontinuities are ascribed to the electronic transitions K?4p and K ? 3d, 4s.  相似文献   

6.
《Physics letters. A》1986,118(2):103-105
In order to estimate the magnetic hyperfine fields at different sites, an analysis of the Mössbauer spectra of polycrystalline untextured Nd2Fe14B, recorded at temperatures above and below the spin reorientation temperature Ts(≈150 K), has been made. Here the signs of the electric field gradients (efg) and the principal axes of efg components have been constrained according to the available crystal structure information below and above Ts. It has been observed that the magnetic hyperfine field changes are similar to the recently reported magnetic moment changes at different sites in an isostructural alloy Tm2Fe14B.  相似文献   

7.
The spin-polarized electronic band structures, density of states (DOS), and magnetic properties of Co-Mn-based Heusler alloys CoMnSb and Co2MnSb have been studied by first-principles method. The calculations were performed by using the full-potential linearized augmented plane wave (FP-LAPW) within the spin-polarized density functional theory and generalized gradient approximation (GGA). Calculated electronic band structures and the density of states are discussed in terms of the contribution of Co 3d74s2, Mn 3d54s2, and Sb 5s25p3 partial density of states and the spin magnetic moments were also calculated. The results reveal that both CoMnSb and Co2MnSb have stable ferromagnetic ground state. They are ideal half-metallic (HM) ferromagnet at their equilibrium lattice constants. The calculated total spin magnetic moments are 3μB for CoMnSb and 6μB for Co2MnSb per unit cell, which agree with the Slater-Pauling rule quite well.  相似文献   

8.
Ferromagnetic ordering of silver impurities in the AlN semiconductor is predicted by plane-wave ultrasoft pseudopotential and spin-polarized calculations based on density functional theory (DFT). It was found that an Ag impurity atom led to a ferromagnetic ground state in Ag0.0625Al0.9375N, with a net magnetic moment of 1.95 μB per supercell. The nitrogen neighbors at the basal plane in the AgN4 tetrahedron are found to be the main contributors to the magnetization. This magnetic behavior is different from the ones previously reported on transition metal (TM) based dilute magnetic semiconductor (DMS), where the magnetic moment of the TM atom impurity is higher than those of the anions bonded to it. The calculated electronic structure band reveals that the Ag-doped AlN is p-type ferromagnetic semiconductor with a spin-polarized impurity band in the AlN band gap. In addition, the calculated density of states reveals that the ferromagnetic ground state originates from the strong hybridization between 4d-Ag and 2p-N states. This study shows that 4d transition metals such as silver may also be considered as candidates for ferromagnetic dopants in semiconductors.  相似文献   

9.
The electronic structure of TiH2 has been studied using the augmented-plane-wave method and the LCAO interpolation. The density of states and its orbital components show that the conduction band is Ti d-like and that the valence band is largely derived from the hydrogen orbitals with small Ti 3d hybridization. The electronic charges on the hydrogen atom are ~ 1.5 as compared to 1.6–1.7 of the rare-earth metal hydrides.  相似文献   

10.
Fe-based amorphous alloy ribbons are one of the major soft magnetic materials, because of their superior magnetic properties such as the relatively high saturation magnetization (Js) of 1.5–1.6 T and good magnetic softness. However, the preparation of the ordinary amorphous magnetic alloys requires cooling rates higher than 104 K/s due to the low glass-forming ability (GFA) and thus restricts the material outer shape. Recently, Fe-metalloid-based bulk metallic glasses (BMGs) containing glass-forming elements such as Al, Ga, Nb, Mo, Y and so forth have been developed. These alloys have high GFA, leading to the formation of BMG rod with diameters of mm-order. However, the glass-forming metal elements in BMGs result in a remarkable decrease in magnetization. Basically, Js depends on Fe content; hence, high Js requires high Fe content in the Fe-based amorphous alloys or BMGs. On the other hand, high GFA requires a large amount of glass-forming elements in the alloys, which results in lower Fe content. Therefore, in substances, the coexistence of high Js and high GFA is difficult. Since this matter should be immensely important from academia to industry in the material field, a great deal of effort has been devoted; however, it has remained unsolved for many years. In this paper, we present a novel Fe-rich FeSiBP BMG with high Js of 1.51 T comparable to the ordinary Fe–Si–B amorphous alloy now in practical use as well as with high GFA leading to a rod-shaped specimen of 2.5 mm in diameter, obtained by Cu-mold casting in air.  相似文献   

11.
The optical absorption spectra of MnCl2, FeCl2, CoCl2, and NiCl2 have been measured over the energy range from 2 to 30 eV. The gross features of the spectra, especially broad bands above 10eV, are alike in all of the four materials. The charge transfer bands due to the electronic transitions from the 3p level of chlorine to the 3d and 4s levels of metal ions and the band due to the 3d → 4s transition are assigned in the spectra.  相似文献   

12.
The hyperfine structure of the low-lying atomic levels 4d 2 5s 2 3 F 2, 3, 4 and 4d 3 5s 5 F 2, 3, 4, 5 of91Zr has been studied using the atomic-beam magnetic-resonance method. Using intermediate coupling wave functions derived for the configurations (4d+5s)4 the experimental data are analysed with respect to the effective operator formalism. The effective radial parameters of the magnetic dipole and electric quadrupole interaction are determined for the two configurations 4d 2 5s 2 and 4d 3 5s and are compared with relativistic calculations. The value obtained for the electric quadrupole moment of the91Zr nuclear ground state isQ=? 0.21(2) barn (uncorrected for core polarization effects).  相似文献   

13.
Formation of a condensate of singlet electron-hole pairs in a two-dimensional metal lattice with the nesting of the Fermi contour is investigated. A numerical solution is obtained for the self-consistency equation for the insulating order parameter depending on the ratio of the coupling constants in the s- and d-wave channels of electron-hole pairing. Solutions with the pure orbital symmetry of s- and d-type are found, as well as solutions with the mixed s + d-symmetry. It is shown that in a wide range of values of the s- and d-wave coupling constants, the two-dimensional insulating order with the orbital symmetry $d_{x^2 - y^2 } $ can compete with pure ordered s- and d xy -states and mixed s + d-states. Time reversal symmetry breaking under an established real order with $d_{x^2 - y^2 } $ -wave symmetry may generate the imaginary component of the order parameter with symmetry d xy and cause a rise in topologically nontrivial d + id-wave ordering similar to the quantum Hall state in the absence of external magnetic field.  相似文献   

14.
A new amorphous alloy has been recently introduced which shows a saturation magnetic induction Bs of 1.64 T which is compared with Bs=1.57 T for a currently available Fe-based amorphous alloy and decreased magnetic losses. Such a combination is rare but can be explained in terms of induced magnetic anisotropy being reduced by the alloy's chemistry and its heat treatment. It has been found that the region of magnetization rotation in the new alloy is considerably narrowed, resulting in reduced exciting power in the magnetic devices utilizing the material. Efforts to increase Bs also have been made for nanocrystalline alloys. For example, a nanocrystalline alloy having a composition of Fe80.5Cu1.5Si4B14 shows Bs exceeding 1.8 T. The iron loss at 50 Hz and at 1.6 T induction in a toroidal core of this material is 0.46 W/kg which is 2/3 that of a grain-oriented silicon steel. At 20 kHz/0.2 T excitation, the iron loss is about 60% of that in an Fe-based amorphous alloy which is widely used in power electronics. Another example is a Fe85Si2B8P4Cu1 nanocrystalline alloy with a Bs of 1.8 T, which is reported to exhibit a magnetic core loss of about 0.2 W/kg at 50 Hz and at 1.5 T induction. This article is a review of these new developments and their impacts on energy efficient magnetic devices.  相似文献   

15.
Peculiarities of the chemical structure of bulk polycrystalline samples of the high-temperature superconductors Bi2Sr2CaCu2O8, BiSrCaCu2O5.5, BiSrCaCu3O8, and YBa2Cu3O7 ? δ have been investigated in detail at room and superconducting temperatures on an X-ray electron magnetic spectrometer equipped with an attachment for low-temperature studies. It is shown that covalent bonding is formed at a superconducting temperature between copper and oxygen due to Cu2+ ions. Due to the enhancement of the d(Cu)–p(O) hybridization of copper and oxygen electrons in the superconducting state, the d-electron density increases near E F. The occurrence of additional peaks in the O1s and Sr3d (Ba3d) spectra after transition of the system to the superconducting state indicates changes in the nearest environment of O and Sr (Ba) atoms, in particular, the transition of Sr atoms to a higher oxidation state.  相似文献   

16.
We report on X-ray magnetic diffraction studies of the spin density wave antiferromagnetism formed in the conduction electron band of chromium. Non-resonant X-ray magnetic scattering was used to directly determine that chromium has zero orbital magnetisation. Furthermore, the azimuthal dependence of this scattering provides unique evidence that chromium forms a linearly polarised wave. In the vicinity of the K absorption edge, resonant X-ray magnetic scattering was observed. A consistent model of the magnetic scattering has been derived from the resonant and non-resonant magnetic amplitudes. The enhancement of the magnetic intensity arises primarily from dipole transitions from the core 1s level to 4p states. Quadrupole transitions to the magnetic 3d states are essentially non-existent due to their sensitivity to (and the absence of) orbital moment. This effect is predicted from atomic considerations of the 3d5 ( = 0) transition metal ions. Received 22 September 2000  相似文献   

17.
The 1s-forms of TaSe2 and TaS2 with octahedral coordination of the metal are diamagnetic; 1s-TaS2 is a semiconductor at low temperature. The diamagnetism is explained by taking account of spin-orbit coupling which leads to a ground state with zero magnetic moment (g = 0). This spin-orbit coupling stabilizes the d1 configuration of the metal with respect to d2 + d0. Thus, it can be understood that 1sTaS2 is semiconducting, while isostructural VSe2 is metallic. Similarly, BaTaS2 and BaTaSe3 are semiconductors, but BaVS3 is metallic.  相似文献   

18.
The electronic and geometrical structures of neutral and charged YOn (n=2–12) clusters have been investigated using density functional theory (DFT) with generalized gradient approximation. The oxygen atom in YOn has been found to be in oxo, peroxo and in superoxo forms. The geometrical structures and topologies of small size anionic clusters resemble that of neutral clusters. Yttrium showed higher coordination number than scandium. Computed results reveal the existence of YO10 cluster to have a penta-peroxo oxygen with a homoleptic Y(η2 –O2)5 geometrical configuration. The HOMO–LUMO gaps decrease with increasing n due to the increase in 2p orbital population of oxygen atoms. It has been shown that in these clusters bonding are predominantly ionic in nature and anions are thermodynamically more stable, due to the charge delocalization between the metal atom and oxygen ligands. YO10+ and YO12+ were found to be highly exothermic to release one and two oxygen molecules, while YO11+ dissociates though the ozonide dissociation channel. Computed absorption spectra of small clusters are mainly contributed by yttrium metal d and s valence orbitals. The absorbance spectra, shifts towards lower energy with cluster size increase, while charge has no substantial effect on the absorption spectrum.  相似文献   

19.
Co and Mn 2p core absorption (XAS) and X-ray magnetic circular dichroism (XMCD) spectra have been measured for the ferromagnetic ternary alloy Co2MnGe. The observed Co 2p XAS spectrum can be understood on the basis of the unoccupied Co 3d partial density of states, whereas the overall features of the Mn 2p XAS and XMCD spectra have been partly reproduced by the Mn 2p53d6 final state multiplets. We have found that the orbital polarization of the Co 3d and even the Mn 3d states are recognizable, which suggests that a spin-orbit coupling should be taken into account in the energy band structure in order to reproduce the half metallic nature of this alloy.  相似文献   

20.
The electronic structure and magnetic properties of PuMGa5 compounds (M = Co, Fe, Ni, Rh, Ir) have been calculated within the LDA + U + SO method taking into account the strong electron-electron correlations and the spin-orbit coupling in the 5f shell of the actinide metal. The features of the electronic structure, coupling type, electron configuration, and magnetic state of the plutonium ion have been considered depending on the type of transition metal in PuMGa5. The estimates of the effective magnetic moment of the plutonium ion agree well with the known experimental values. It has been shown that the occupancy of d states of the transition metal correlates with the appearance of superconductivity in the compounds of this class, providing the optimum doping regime in the electronic subsystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号