首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on the magnetic behaviour of films of Fe nanoparticles deposited from the gas phase with sizes in the range 2–3 nm embedded in Ag and Co matrices and Co nanoparticles of the same size embedded in Ag matrices. Magnetometry measurements, using a VSM, of very low volume fraction (1–2%) assemblies of Fe and Co in Ag show perfect superparamagnetism and enable us to confirm that the size distribution of the particles in the matrix is the same as that of the free particles prior to deposition. The hysteresis loops at 2 K, which is below the blocking temperature, show that the particles have a uniaxial anisotropy that is randomly oriented in three dimensions with the Co nanoparticles having a much higher anisotropy than the Fe particles. The soft magnetic behaviour of pure Fe and Co nanoparticle films with no matrix is well described by a random anisotropy model and is consistent with the formation of a correlated super-spin glass (CSSG) characteristic of amorphous materials. The Co nanoparticle films appear to have a lower random anisotropy than the Fe ones in contrast to the behaviour observed for the isolated particles. Films of Fe nanoparticles embedded in Co matrices, whose saturation magnetization exceeds the Slater–Pauling curve, also show magnetic behaviour consistent with a CSSG. At high volume fractions, the films of Fe nanoparticles embedded in Co matrices behave almost identically to films of pure Co nanoparticles.  相似文献   

2.
Nanoparticles coated with single stranded DNA have been shown to efficiently hybridize to targets of complementary DNA. This property might be used to implement programmable (or algorithmic) self-assembly to build nanoparticle structures. However, we argue that a DNA coated nanoparticle by itself cannot be used as a programmable self-assembly building block since it does not have directed bonds. A general scheme for assembling and purifying nanoparticle eight-mers with eight geometrically well-directed bonds is presented together with some preliminary experimental work.  相似文献   

3.
Organisation of nanoparticles on structurally well-defined templates is a first step towards creating nanomachines. In this respect, nucleic acids are ideal structural templates and a variety of secondary structures realizable from DNA/RNA––e.g., duplexes, hairpins, triplexes, cruciforms, tetraplexes can be exploited to engineer nanoparticle organization at will. We have used oligonucleotides and their analogues such as phosphorothioates and peptide nucleic acids to electrostatically encapsulate cationic-capped gold nanoparticles. This article describes synthesis and characterization of DNA/PNA-gold nanoparticle composites using TEM and UV-Tm techniques. These types of assemblies may have potential for creating nanowires and lithographic circuits.  相似文献   

4.
This communication describes the study of fluorescence quenching in a new fluorescent laser dye ADS680HO is attached to gold nanoparticles of size 4-12 nm. Photo physical properties confirms that it is due to size, shape, coupling between nanoparticles with laser dye ADS680HO, and energy transfer between dye and nanoparticles. Fluorescence quenching leads to advancement in biomolecular labeling and fluorescence patterning.  相似文献   

5.
郭宇  刘志锋  赵纪军 《物理》2022,51(8):550-558
团簇是介于微观原子、分子与宏观凝聚态之间的物质结构新层次,具有确定的原子数量和精确可控的几何与电子结构。某些特定的稳定团簇具有类似单个原子的特性,因此可看作“超原子”进行功能精确可控的材料组装与器件设计。文章以富勒烯团簇、金属掺杂Si/Ge团簇、八面体[M6E8]团簇和As团簇为例,重点介绍近年来团簇组装结构的实验和理论研究进展,探讨团簇组装对团簇物理、化学性质的调控作用,并对本领域存在的问题与发展思路进行了展望。关键词团簇,超原子,组装结构,物性调控  相似文献   

6.
Quantum dots have been fabricated with single-wall carbon nanotubes (SWCNTs), and their transport properties have been measured at low temperatures. The single-electron transport measurements revealed the artificial atom characteristics with a shell structure and the Zeeman splitting of single particle states. They have been observed with the metallic SWCNT that includes many electrons, in striking contrast to the case of semiconductor artificial atoms that have a few electrons. The unique features in the SWCNT artificial atom are discussed in terms of the energy scales associated with the quantum dot.  相似文献   

7.
Industrial and medical applications for gold nanoparticles are extensive, yet highly dependent on their chemical and structural properties. Thus, harnessing the size and shape of nanoparticles plays an important role in nanoscience and nanotechnology. Anisotropic polyhedra and nanoplates were biosynthesized via reduction of 3 mM AuCl4 solution at room temperature. Alfalfa biomass extracts prepared in water and in isopropanol separately were used as reducing agents at pH 3.5 and 3.0, respectively. Nanoparticles observed in the isopropanol extract presented a size range of 30–60 nm, and the morphologies present included 30 nm decahedra and 15 nm icosahedra. Gold nanoplates produced in the water extract were mainly triangular, ranging from 500 nm to 4 μm in size. The resulting nanoparticles and nanoplates can be potentially used in the study of their unique physical properties and for the mechanisms of formation using alfalfa biomass extracts.  相似文献   

8.
Gold nanoparticles (AuNPs) are used in sensing methods as tracers and transducers. The most common AuNP synthesis techniques utilize citrate under acidic reaction conditions. The synthesis described in this article generates glyco-AuNPs under mild alkaline conditions providing a “greener” alternative to Brust and Turkevich methodologies. This biologically compatible one-step technique uses dextrin as a capping agent and sodium carbonate as the reducing agent for chloroauric acid. The generated particles were relatively mono-dispersed and water soluble with a range of controllable mean diameters from 5.9 to 16.8 ± 1.6 nm. The produced AuNPs were stable in water for more than 6 months stored at room temperature (21 °C) in generation solution without protection from light. This article shows the effect of temperature, pH, and dextrin concentration on the synthesis procedure and AuNP diameter. These factors were found to control the reaction speed. The produced glyco-AuNPs were successfully functionalized with DNA oligonucleotides, and the functionalization efficiency was similar to citrate-generated AuNPs. The alkaline synthesis allows future exploration of simultaneous synthesis and functionalization procedures, which could significantly reduce the time of current ligand exchange methodologies.  相似文献   

9.
In this study, the meso-tetra (p-hydroxyphenyl) porphyrin and meso-tetra (m-hydroxyphenyl) porphyrin were coated on to gold nanoparticles (AuNPs) via thioacetate anchors which easily dissociate to form S–Au bonds. 4-tert-butyl phenyl thioacetate-AuNPs were prepared and used as a monodentate passivant to control the size of the tetradentate porphyrin-AuNPs. The porphyrin-coated AuNPs were characterized by UV–Vis, TEM, XRD, and XPS analyses. The tetradentate porphyrin-AuNPs size is within a range of 5–15 nm in diameter with exotic shapes. The plausible network formation for AuNP@p-TPP-SAc and the capping structure of the AuNP@m-TPP-SAc have been suggested.  相似文献   

10.
Arrays of noble metal nanoparticles show potential applications in (bio-)sensing, optical storage, surface-enhanced spectroscopy, and waveguides. For all such potential devices, controlling the size, morphology, and interparticle spacing of the nanoparticles is very important. Here, we combine seed-mediated growth with nanosphere lithography to study the controllable growth of gold nanoparticles (Au NPs), in which the self-assembly monolayer of polystyrene (PS) on a silicon surface is used to guide the modification of alkanesilanes and the subsequent adsorption of gold seeds; seed-mediated growth is applied to controlling the morphology and size of Au NPs. The size of adsorption region (determining the number of adsorbed gold seeds) is controlled by etching PS microspheres with oxygen plasma or annealing PS microspheres at the glass transition temperature. The size and morphology of the Au NPs are controlled by changing growth conditions. In such a way, we have achieved the dual control of the obtained Au NPs. Preliminary results show that this strategy holds a great promise. This approach can also be extended to a wide range of materials and substrates.  相似文献   

11.
Silicon-based photonic crystal is a promising material for terahertz (THz) waveguide due to its high refractive index contrast. In this work, we introduce eye-shaped pillars as the feature building blocks for two-dimensional (2D) photonic crystals. The simulation study shows that larger TE mode band gaps (PBGs) can be created by the arrangement of dielectric eye-shaped pillars in air. The reflective spectra demonstrate that there are complex PBGs, where the peak position and intensity can be changed by varying the parameter e. Moreover, the peak of reflective spectra exhibits an obvious blue shift with the increase of incidence angle of light. When the vacant space in the structure is filled by polystyrene (PS) microspheres of 2 μm in diameter, the peak intensity of reflective spectra reduces significantly compared with that without PS microspheres, which suggests that this design can act as a sensor in the fields of biology, agriculture or medicine.  相似文献   

12.
Stakenborg  T.  Peeters  S.  Reekmans  G.  Laureyn  W.  Jans  H.  Borghs  G.  Imberechts  H. 《Journal of nanoparticle research》2008,10(1):143-152

In this work, the stability of DNA functionalized gold nanoparticles was examined in relation to their size, temperature, as well as the presence of mono- and bivalent ions. Furthermore, we report on the stabilizing effect of an additional post-functionalization with mercaptoalkanes, optionally bearing triethylene glycol (TEG) units. Although such so-called backfilling molecules are commonly used for planar gold surfaces, they have rarely been reported in combination with DNA-functionalized nanoparticles. Our results show that, conform the DLVO theory, smaller citrate-capped gold nanoparticles were more stable towards higher concentrations of salt. Citrate nanoparticles of 30 nm in size were only stable in sodium chloride concentrations up to ~0.05 M and up to 45 °C. The stability of these uncoated nanoparticles was even lower when bivalent salts were used (i.e. <2 × 10−4 M). Immobilization of DNA on these nanoparticles, on the other hand, improved the stability in salt solutions with at least one order of magnitude. The additional use of backfilling molecules stabilized the gold nanoparticles even further, without negatively affecting the DNA hybridization efficiency. DNA functionalization also had a positive impact on the thermal stability of the nanoparticles. Unfortunately, this beneficial effect was not observed after a subsequent backfilling step.

  相似文献   

13.
李英  胡艳军 《中国物理 B》2013,22(3):34206-034206
Gold nanoparticles are gaining increasing attention due to their biological and medical applications.In this letter,we experimentally demonstrate the optical manipulation of 250-nm-diameter gold nanoparticles along an optical nanofiber(550 nm in diameter) injected by an 808-nm laser light.The nanoparticles situated in the evanescent optical field are trapped by optical gradient force and move along the direction of light propagation due to optical scattering force.The velocities reach as high as 132 μm/s at an optical power of 80 mW.  相似文献   

14.
We report the assembling of 20 nm gold nanoparticles into the nanogap electrodes by dielectrophoresis (DEP) technique. DEP was performed on electrodes with different gap size values. While the frequency and the applied peak to peak voltage were maintained at 1 MHz and 3 V, respectively, DEP time was varied in accordance with electrodes gap size. Interestingly, some novel assembling was observed during the dielectrophoresis process and the nanogaps were bridged by nanoparticles either forming ring shaped bridges or linear bridges. The assembling of nanoparticles in different form is attributed to the positive DEP effect. This effect is seen to be influenced significantly by the time parameter during which DEP was performed. Results show the promise of dielectrophoresis in controlled engineering of nanoparticles assembly.  相似文献   

15.
Surface-enhanced Raman scattering (SERS) is greatly structure-dependent on the absorbed nanoparticles. Nanostructures with different novel morphologies show different Raman enhancement factor orders of magnitude. Herein, a unique nanostructure with fruitful SERS-active sites, composed of hollow interiors and thorns which named as hollow sea-urchin gold nanoparticles (HSU-GNPs), was synthesized by using a one-pot galvanic replacement method. And the corresponding morphologies and optical properties were characterized by TEM images and absorption spectra. Importantly, the synthetic parameters of HSU-GNPs were optimized to obtain a superior SERS performance by analyzing the formation mechanism and the SERS spectra of R6G-labeled HSU-GNPs which obtained at different concentrations of AgNO3. Furthermore, the SERS-based application of HSU-GNPs was performed on the dose-response detection of thiram. The experimental result shows this detection strategy is available for thiram with decent sensitivity and reproducibility, which suggests that it is an excellent candidate for the detection of pesticides.
Graphical abstract This study reports a low-cost and easy-operated pesticide residues detection method based on hollow sea-urchin gold nanoparticles using SERS.
  相似文献   

16.
Chang BJ  Lin SH  Chou LJ  Chiang SY 《Optics letters》2011,36(24):4773-4775
A reflective light-scattering (RLS) microscope with structured illumination (SI) provides subdiffraction resolution and improves the image quality of gold nanoparticles in biological systems. The three-dimensional (3D)-structured pattern is rapidly and precisely controlled with a spatial light modulator and scrambled at the conjugate image plane to increase spatial incoherence. The reconstructed SI-RLS image of 100?nm gold nanoparticles reveals lateral and axial resolutions of approximately 117 and 428?nm. We present a high-resolution image of gold nanoparticles inside a HeLa cell, with improved contrast.  相似文献   

17.
We present a label-free, nondestructive and high sensitivity biosensor by using the phase information of a gold nanoparticles enhanced ellipsometry signal. The refractive index (RI) resolution from ellipsometric phase information is of the order of 1.6×10(-6) RI units. Furthermore, spectroscopic and dynamic measurements show substantial change in the phase signal when biomolecules are coated on gold nanoparticles. The detection limit of our proposed technique is up to ~18?pM concentration of the target biomolecules.  相似文献   

18.
We report simple and efficient fabrication of large-area gold nanostructures using solution-processible gold nanoparticles, where lithography and vacuum evaporation techniques are not involved in the fabrication processes. These gold nanoisland structures exhibit strong particle plasmon resonance that is characterized by optical extinction spectroscopy in the visible spectral range. The tunability of the optical response is realized by controlling the annealing temperature and by changing the concentration of the colloidal solutions of gold nanoparticles. This enables a low-cost route for exploiting new photonic devices, biosensors, and optoelectronic devices with localized field-enhancement.  相似文献   

19.
Amphiphilic gold nanoparticles (AuNPs) functionalized with mixed monolayers consisting of hydrophobic and hydrophilic ligands find widespread applications in biosensing, drug delivery, and bioimaging. One important aspect of amphiphilic AuNPs in such applications is the tuning of the surface properties of these AuNPs by modifying the composition of the ligands. In this study, well-dispersed AuNPs as individuals with mixed monolayers of hydrophobic and hydrophilic ligands were synthesized and the ratios of hydrophilic and hydrophobic ligands on the AuNP surfaces with varying ligand lengths were investigated by electrostatic titration. We demonstrated that longer hydrophobic ligands have higher affinity for the AuNP surface, and that the relative ligand length plays an important role in determining the maximum hydrophobic coverage on the AuNP surface at which the ratio of the amount of hydrophobic to that of hydrophilic ligands on the AuNP surface is the largest, for AuNPs to remain as individuals. We expect that the AuNPs synthesized with diverse ratios of hydrophobic and hydrophilic ligands on the surface can be useful in biological applications.
Graphical abstract ?
  相似文献   

20.
The approach of using ‘magnetic bricks’ to build up different sorts of networks via supramolecular interactions is discussed. Two sorts of magnetic brick, with 3 and 12 linked Cu(II) centres, respectively, are used to illustrate this idea. The trinuclear brick has been crystallographically characterised in three compounds and can be used to create pseudo-Kagome networks. Magnetic measurements are reported on two of these compounds. The dodecanuclear brick has been crystallographically characterised both as an isolated aggregate and as units linked together in one, two or 3D arrays. Magnetic data are described for three of these compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号