首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adsorption of anionic lipid vesicles (liposomes) on the surfaces of colloidal particles containing grafted polycationic chains (cationic brushes) is studied. The stability of liposome-brush complexes in aqueous salt solutions increases with the content of anionic lipid in the liposomal membrane; complexes with liposomes containing 20 and 30 mol% anionic lipids do not dissociate into individual components in a 1.2 M NaCl solution. The integrity of the brush-bound liposomes is preserved. The developed approach can be used to obtain nanosized carriers for biologically active compounds.  相似文献   

2.
Polyampholites are synthesized by the alkylation of poly-4-vinylpyridine with ω-bromocarboxylic acids, and their interaction with the negatively charged bilayer lipid vesicles (liposomes) is studied. In the above polymers, quaternized pyridine units are zwitterion (betaine) groups, in which cationic and anionic groups are linked by the -(CH2) n -bridges. Via the methods of fluorescence, laser scattering, and DSC, the length of the ethylene spacer in the betaine group is shown to control the ability of the polymer to interact with anionic liposomes and induce structural rearrangements in the liposomal membrane. At n = 1, polybetaine is not linked to anionic liposomes. At n = 2, polybetaine is sorbed on the membrane, but it causes no dramatic structural rearrangements in the bilayer. At n = 3, the adsorption of polybetaine triggers the lateral segregation of lipids in the outer membrane layer. At n = 5, adsorption of polymer is accompanied by the lateral segregation and flip-flop of lipid molecules; as a result, all anionic membrane lipids are involved in the microphase separation. This evidence is of evident interest for the controlled design of polymers and related complexes and conjugates for biomedical applications.  相似文献   

3.
Adsorption of the synthetic polycation poly-N-ethyl-4-vinylpyridinium bromide (PEP) on the surface of bilayered lipid vesicles (liposomes) is studied. Two types of liposomes are used: (i) traditional two-component liposomes formed from neutral phosphatidylcholine (PC) and anionic diphosphatidylglycerol (cardiolipin, CL2−) and (ii) PC/CL2− anionic liposomes with the built-in nonionogenic surfactant poly(ethyleneglycol) cetyl ether with a degree of polymerization of 20 (Brij-58). PEP is quantitatively linked with both types of liposomes; this process is electrostatic in character and fully reversible. The formation of a poly(ethylene glycol) layer on liposomal membrane decreases the stability of polycation-liposome complexes in aqueous salt solutions. Adsorption of PEP on the surface of PC/CL2− liposomes is accompanied by their aggregation; PC/CL2−/Brij liposomes do not aggregates, even during complete neutralization of their charge by the adsorbed PEP. DSC measurements showed that the adsorption of the polycation is accompanied by microphase separation in the liposomal membrane: formation of domains, which are composed primarily of CL2− molecules and linked to the complex with PEP, and regions, where electroneutral lipids are primarily concentrated. With the use of a spin probe, the packing density of bilayers (their microviscosity) is estimated, and a preferential localization of the probe at the boundaries of lipid domains in the membrane based on PC/CL2−/Brij liposomes is proposed. The causes of the aggregative stability of three-component PC/CL2−/Brij liposomes are described, and the structure of the prepared polymer-liposome complexes is discussed.  相似文献   

4.
The modification of poly(4-vinylpyridine) with ω-bromocarboxylic acids and alkyl bromides yields three types of polyampholytes: polyampholytes containing both cationic and anionic groups in each monomer unit (polybetaines), polyampholytes containing betaine and cationic units, and polyampholytes containing betaine units and side cetyl radicals. Their complex formation with liposomes formed from zwitterionic (electroneutral) phosphatidylcholine and anionic diphosphatidylglycerol (cardiolipin) is investigated. The method for fixation of polymers on the liposomal membrane and the stability of the formed complexes are determined by the chemical structure of macromolecules. For the most part, polyelectrolytes are electrostatically adsorbed on the membrane and are fully removed from it with an increase in the salt concentration in the surrounding solution. An exception is the polybetaine obtained through the modification of poly(4-vinylpyridine) with ω-bromobutyric acid, which irreversibly binds to liposomes probably owing to the incorporation of macromolecular fragments into the hydrophobic part of the lipid bilayer. The insertion of side cetyl radicals into polybetaine molecules stabilizes their complexes with liposomes in the presence of salts. The cytotoxicity of the synthesized polyampholytes is one to two orders of magnitude lower than that of a cationic polymer with the same degree of polymerization.  相似文献   

5.
Interaction of the cationic polymer poly-N-ethyl-4-vinylpyridinium bromide with bilayer vesicles (liposomes) composed of zwitterionic dipalmitoylphosphatidylcholine and anionic cardiolipin (the molar fraction of the negatively charged cardiolipin groups is 0.2) is studied. The composition and characteristics of the polycation-liposome complex are shown to be controlled by the phase state of the lipid membrane. Liposomes whose membranes exist in their LC state (“liquid” liposomes) keep their integrity in the complex with polycation. The adsorbed polycation can be completely removed from the liposomal membrane by the addition excess amounts of a competing polyanion. The adsorption of polycation on the surface of liposomes whose membranes exist the gel state (“solid” liposomes) leads to the formation of defects in the membrane, and the polycation’s adsorption with such liposomes becomes irreversible. The defects that form are also preserved when solid liposomes on whose surface the polycation is sorbed are transformed into the liquid state. Moreover, the reversible contact between polycation and liquid liposomes becomes irreversible once the liposomal membranes bound to the polycation transform into the solid state.  相似文献   

6.
The adsorption of a synthetic polycation, poly(N-ethyl-4-vinylpyridinium bromide) (PEVP), on the surface of bilayer lipid vesicles (liposomes) and the migration of adsorbed macromolecules between the liposomes are studied. Liposomes of three types are used, including (1) traditional two-component liposomes composed of neutral phosphatidylcholine (PC) and anionic cardiolipin (CL); (2) three-component liposomes consisting of PC, CL, and cationic dicetyldimethylammonium bromide (DCMAB); and (3) anionic PC/CL liposomes with a nonionic surfactant, poly(ethylene oxide)-cetyl alcohol ether (Briij 58), incorporated into their bilayers. The adsorption of PEVP on the surface of PC/CL liposomes is accompanied by their aggregation. Using the fluorescence method, it is shown that the units (segments) of the polycation undergo partial redistribution between the liposomes inside the aggregates formed from PC/CL liposomes (with and without a fluorescent label) and PEVP. On the contrary, three-component PC/CL/DCMAB and PC/CL/Briij liposomes are not aggregated, even with the complete neutralization of their charges by adsorbed PEVP. In both cases, the migration of PEVP molecules between individual (nonaggregated) liposomes is observed. Possible reasons for the aggregative stability of the three-component PC/CL/DCMAB and PC/CL/Briij liposomes and the mechanism of interliposome migration of PEVP in such systems are discussed.  相似文献   

7.
Poly(N-ethyl-4-vinylpyridinium bromide) (a polycation with a degree of polymerization of 1100) was adsorbed onto liposomes composed of egg lecithin with a 0.05-0.20 molar fraction (nu) of anionic headgroups provided by cardiolipin (a doubly anionic lipid). According to electrophoretic mobility data, this led to total charge neutralization of the liposomes, whereupon the liposomes adopted a positive charge as additional polymer continued to adsorb. Although the liposomes aggregated at the charge-neutralization point, they disassembled into individual liposomes after becoming positively charged. The degree of polymer adsorption was shown to reach a limit. Thus, by measuring the free polymer content in a liposome suspension, it was possible to determine the polymer concentration at which the liposome surface became saturated with polymer. Beyond this point, an electrostatic/steric barrier at the surface suppressed further adsorption. Dynamic light scattering studies of liposomes with and without adsorbed polymer allowed calculation of the polymer film thickness which ranged from 22 to 35 nm as the molar fraction of cardiolipin (nu) increased from 0.05 to 0.20. The greater the content on the anionic lipid in the bilayer, the thicker the polymer film. The maximum number of polymer molecules adsorbed onto the liposomes was estimated: 1-2 molecules for nu = 0.05; 3 molecules for nu = 0.1; 4- molecules for nu = 0.15; and 6 molecules for nu = 0.2. The polymer appears to lie on the liposome surface, rather than embedding into the bilayer, because addition of NaCl easily dislodges the polymer from the liposome into the bulk water.  相似文献   

8.
ζ-potential measurements on LUVs allow to evidence the influence of pH, ionic salt concentration, and polyelectrolyte charge on the interaction between polyelectrolyte (chitosan and hyaluronan) and zwitterionic lipid membrane. First, chitosan adsorption is studied: adsorption is independent on the chitosan molecular weight and corresponds to a maximum degree of decoration of 40% in surface coverage. From the dependence with pH and independence with MW, it is concluded that electrostatic interactions are responsible of chitosan adsorption which occurs flat on the external surface of the liposomes. The vesicles become positively charged in the presence of around two repeat units of chitosan added per lipid accessible polar head in acid medium down to pH = 7.2. Direct optical microscopy observations of GUVs shows a stabilization of the composite liposomes under different external stresses (pH and salt shocks) which confirms the strong electrostatic interaction between the chitosan and the lipid membrane. It is also demonstrated that the liposomes are stabilized by chitosan adsorption in a very wide range of pH (2.0 < pH < 12.0). Then, hyaluronan (HA), a negatively charged polyelectrolyte, is added to vesicles; the vesicles turn rapidly negatively charged in presence of adsorbed HA Finally, we demonstrated that hyaluronan adsorbs on positively charged chitosan-decorated liposomes at pH < 7.0 leading to charge inversion in the liposome decorated by the chitosan-hyaluronan bilayer. Our results demonstrate the adsorption of positive and/or negative polyelectrolyte at the surface of lipidic vesicles as well as their role on vesicle stabilization and charge control.  相似文献   

9.
Formation of complexes obtained by the adsorption of a cationic polymer, poly(N-ethyl-4-vinylpyridium bromide), with a degree of polymerization of 600 on the surface of 50-nm bilayer vesicles (liposomes) formed from neutral phosphatidyl choline, anionic diphosphatidyl glycerol (cardiolipin), and a surfactant with one alkyl radical, such as electroneutral n-hexadecylphosphocholine, palmitic acid, or heptanoic acid, is studied. The incorporation of these surfactants into the liposomal membrane stimulates the appearance of oxidized forms of lipids in it. The incorporation of n-hexadecylphosphocholine into the membrane of n-hexadecylphosphocholine and palmitic acid with the alkyl radical, whose length is comparable with the length of alkyl radicals in a lipid molecule, has no effect on the permeability of the membrane. However, these liposomes lose integrity upon the adsorption of polycation; as a result, complexation becomes irreversible. Electroneutral and anionic surfactants with long hydrocarbon chains may accumulate in a cellular membrane owing to the oxidative degradation of unsaturated radicals in lipid molecules. This finding may be used in the design of polymeric therapeutic means specifically interacting with damaged cells.  相似文献   

10.
Microelectrophoresis, dynamic light scattering, fluorescence, and microcalorimetry are used to study the adsorption of a synthetic polycation, poly-N-ethyl-4-vinylpyridinium bromide, on the surface of three-component liposomes formed from electrically neutral phosphatidylcholine, anionic diphosphatidylglycerol (cardiolipin), and cationic dicetyldimethylammonium bromide, with the two latter being taken in equal amounts. The adsorption of the polycation on the liposomal membrane results in the generation of a positive charge, which provides the polycation-liposome complex with aggregation stability. Increasing salt concentration in the suspension causes the complex to dissociate into its components. According to the microcalorimetry data, the membranes of the initial three-component liposomes consist of two microphases, with one of them being enriched with the neutral lipid and another one, with the ionic components. The polycation adsorption does not lead to noticeable structural rearrangements in the liposomal membranes.  相似文献   

11.
Two types of complexes were prepared from a cationic cholesterol derivative, dioleoylphos-phatidylcholine and DNA. Depending on the preparation procedure complexes were either dense snarls of lipid covered DNA (type A) or multilayer liposomes with DNA between layers (type B). The transfection efficiency of the snarl-shaped complexes was low but positive. The transfection efficiency of the liposome-shaped complexes was zero, while DNA release upon their interaction with anionic liposomes was 1.7 times higher. The differences in transfection efficacy and DNA release could not be ascribed to the difference in resistance of complexes to decomposition upon interaction with anionic liposomes or intracellular environment since the lipid composition of complexes is the same. Instead the complexes in which lipoplex phase is more continuous (type A) should require more anionic lipids or more time within a cell for complete decomposition. Prolonged life time should lead to the higher probability of DNA expression.  相似文献   

12.
Zwitterionic inverse-phosphocholine (iPC) lipids contain headgroups with an inverted charge orientation relative to phosphocholine (PC) lipids. The iPC lipid headgroup has a quaternary amine adjacent to the bilayer interface and a phosphate that extends into the aqueous phase. Neutral iPC lipids with ethylated phosphate groups (CPe) and anionic iPC lipids nonethylated phosphate groups (CP) were synthesized. The surface potential of CPe liposomes remains negative across a broad pH range and in the presence of up to 10 mM Ca(2+). CP liposomes aggregate in the presence of Ca(2+), but at a slower rate than other anionic lipids. Hydrolysis of CP lipids by alkaline phosphatases generates a cationic lipid. CPe liposomes release encapsulated anionic carboxyfluorescein (CF) 20 times faster than PC liposomes and release uncharged glucose twice as fast as PC liposomes. As such, iPC lipids afford a unique opportunity to investigate the biophysical and bioactivity-related ramifications of a charge inversion at the bilayer surface.  相似文献   

13.
Interactions of hemoglobin with lecithin liposomes   总被引:1,自引:0,他引:1  
In this paper, the interaction of hemoglobin (Hb) with lecithin liposomes is studied by UV-vis spectroscopy, fluorescent spectroscopy, and transmission electron microscopy. The adsorption of Hb on liposomes is likely to be related to the hydrophobic interaction between Hb and liposomes, which brings about the increase of the microenvironmental polarity (I 1/I 3) and the decrease of the fluorescence polarization (P) of lecithin liposomes. These results are considered to be that the adsorption of Hb on liposomes makes the spaces between the lecithin molecules increase, and a temporary gap is consequently formed in the liposomal bilayer membranes. The leakage of aqueous-space marker from the liposomes is increased with the addition of Hb.  相似文献   

14.
The effects of adsorption of two kinds of proteins on the membrane characteristics of liposomes were examined at pH 7.4 in terms of adsorption amounts of proteins on liposomes, penetrations of proteins into liposomal bilayer membranes, phase transition temperature, microviscosity and permeability of liposomal bilayer membranes, using positively charged lysozyme (LSZ) and negatively charged bovine serum albumin (BSA) as proteins and negatively charged L-alpha-dipalmitoylphosphatidylglycerol (DPPG) liposomes. The saturated adsorption amount of LSZ was 720 g per mol of liposomal DPPG, while that of BSA was 44 g per mol of liposomal DPPG. The penetration of LSZ into DPPG lipid membranes was greater than that of BSA. The microviscosity in the hydrophobic region of liposomal bilayer membranes increased due to adsorption (penetration) of LSZ or BSA, while the permeability of liposomal bilayer membranes increased. The gel-liquid crystalline phase transition temperature of liposomal bilayer membranes was not affected by adsorption of LSZ or BSA, while the DSC peak area (heat of phase transition) decreased with increasing adsorption amount of LSZ or BSA. It is suggested that boundary DPPG makes no contribution to the phase transition and that boundary DPPG and bulk DPPG are in the phase-separated state, thereby increasing the permeability of liposomal bilayer membranes through adsorption of LSZ or BSA. A possible schematic model for the adsorption of LSZ or BSA on DPPG liposomes was proposed.  相似文献   

15.
The adsorption of the synthetic polycation poly(N-ethyl-4-vinylpyridinium bromide) on the surface of three-component lipid vesicles (liposomes) formed from a mixture of anionic cardiolipin, electroneutral egg lecithin, and nonionic cholesterol is studied via laser microelectropheresis, dynamic light scattering, conductometry, fluorescence spectroscopy, and UV spectroscopy. The incorporation of cholesterol into the liposomal membrane increases its microviscosity; however, the membrane remains liquid-crystalline. Simultaneously, an increase in the fraction of cholesterol causes the formation of defects in liposome membranes during their binding with poly(N-ethyl-4-vinylpyridium bromide) and makes complexation irreversible. The results of this study are of interest for predicting the behavior of polyelectrolytes and biologically active structures formed on their basis on the surface of cells and the reaction of the cellular membrane to the adsorbed polymer.  相似文献   

16.
The interaction of surface-active molecules with lipid bilayers is ubiquitous both in biological systems and also in several technological applications. Here we explore the interaction of ionic surfactants with liposomes whose composition mimics the ocular epithelia. In this study, liposomes with a composition mimicking ocular epithelia are loaded with calcein dye above the self-quenching concentration. The liposomes are then exposed to surfactants, and the rate of dye leaked from the liposomes due to the interaction of surfactants is measured. Both cationic and anionic surfactants at various concentrations and ionic strengths are explored. Results show that the liposome bilayer permeability to the dye increases on exposure to the surfactants, leading to the release of the dye trapped in the core. However, the dye release stops after a finite time, suggesting a transient increase in permeability followed by healing. The leakage profiles exhibit two different timescales for the cationic surfactant but only one timescale for the anionic surfactant. The total dye leakage increases with surfactant concentration, and at a given concentration, the dye leakage is significantly higher for the cationic surfactants. The timescale for the healing decreases with increasing surfactant concentration, and increasing ionic strength increases the dye leakage for the anionic surfactant. These results show that the surfactant binding to the lipid bilayer increases the permeability while the bilayers heal likely because of the surfactant jump from the outer to the inner leaflet and/or rearrangement into tighter aggregates.  相似文献   

17.
Anionic liposomes, composed of egg lecithin (EL) or dipalmitoylphosphatidylcholine (DPPC) with 20 mol% of cardiolipin (CL(2-)), were mixed with cationic polymers, poly(4-vinylpyridine) fully quaternized with ethyl bromide (P2) or poly-l-lysine (PL). Polymer/liposome binding studies were carried out using electrophoretic mobility (EPM), fluorescence, and conductometry as the main analytical tools. Binding was also examined in the presence of added salt and polyacrylic acid (PAA). The following generalizations arose from the experiments: (a) Binding of P2 and PL to small EL/CL(2-) liposomes (60-80 nm in diameter) is electrostatic in nature and completely reversed by addition of salt or PAA. (b) Binding can be enhanced by hydrophobization of the polymer with cetyl groups. (c) Binding can also be enhanced by changing the phase state of the lipid bilayer from liquid to solid (i.e. going from EL to DPPC) or by increasing the size of the liposomes (i.e. going from 60-80 to 300 nm). By far the most promising systems, from the point of view of constructing polyelectrolyte multilayers on liposome cores without disruption of liposome integrity, involve small, liquid, anionic liposomes coated initially with polycations carrying pendant alkyl groups.  相似文献   

18.
The effect of the lipid polar headgroup on melittin-phospholipid interaction was investigated by cryo-TEM, fluorescence spectroscopy, ellipsometry, circular dichroism, electrophoresis and photon correlation spectroscopy. In particular, focus was placed on the effect of the lipid polar headgroup on peptide adsorption to, and penetration into, the lipid bilayer, as well as on resulting colloidal stability effects for large unilamellar liposomes. The effect of phospholipid headgroup properties on melittin-bilayer interaction was addressed by comparing liposomes containing phosphatidylcholine, -acid, and -inositol at varying ionic strength. Increasing the bilayer negative charge leads to an increased liposome tolerance toward melittin which is due to an electrostatic arrest of melittin at the membrane interface. Balancing the electrostatic attraction between the melittin positive charges and the phospholipid negative charges through a hydration repulsion, caused by inositol, reduced this surface arrest and increased liposome susceptibility to the disruptive actions of melittin. Furthermore, melittin was demonstrated to induce liposome structural destabilization on a colloidal scale which coincided with leakage induction for both anionic and zwitterionic systems. The latter findings thus clearly show that coalescence, aggregation, and fragmentation contribute to melittin-induced liposome leakage, and that detailed molecular analyses of melittin pore formation are incomplete without considering also these colloidal aspects.  相似文献   

19.
The effect of adsorption of bovine serum albumin (BSA) on the membrane characteristics of liposomes at pH 7.4 was examined in terms of zeta potential, micropolarity, microfluidity and permeability of liposomal bilayer membranes, where negatively charged L-alpha-dipalmitoylphosphatidylglycerol (DPPG)/L-alpha-dipalmitoylphosphatidylcholine (DPPC), negatively charged dicetylphosphate (DCP)/DPPC and positively charged stearylamine (SA)/DPPC mixed liposomes were used. BSA with negative charges adsorbed on negatively charged DPPG/DPPC mixed liposomes but did not adsorb on negatively charged DCP/DPPC and positively charged SA/DPPC mixed liposomes. Furthermore, the adsorption amount of BSA on the mixed DPPG/DPPC liposomes increased with increasing the mole fraction of DPPG in spite of a possible electrostatic repulsion between BSA and DPPG. Thus, the adsorption of BSA on liposomes was likely to be related to the hydrophobic interaction between BSA and liposomes. The microfluidity of liposomal bilayer membranes near the bilayer center decreased by the adsorption of BSA, while the permeability of liposomal bilayer membranes increased by the adsorption of BSA on liposomes. These results are considered to be due to that the adsorption of BSA brings about a phase separation in liposomes and that a temporary gap is consequently formed in the liposomal bilayer membranes, thereby the permeability of liposomal bilayer membranes increases by the adsorption of BSA.  相似文献   

20.
It is known that cyclodextrins (CDs) extract lipid components from bilayer of liposomes. This could undermine the potential benefits of liposomes as drug carriers. In this study, we demonstrated that PC-Chol liposomes with various CDs or rhapontin (Rh)-hydroxypropyl betaCD (HPbetaCD) complexes could be stabilized by association with the amphiphilic polyelectrolyte, poly(methacrylic acid-co-stearyl methacrylate). Based on the results of differential scanning calorimetry, photocorrelation spectroscopy and transmission electron microscopy, the polymer-associated liposomes had the same vesicular form as liposome with clear boundaries and retained structural integrity for at least 1 month. In addition, the polymer-associated structure was unaffected by the type of CD, the composition and concentration of lipid components, and the concentration of the Rh-HPbetaCD complex. This contrasted with PC-Chol liposomes, whose structure was dependent on these factors. Using structurally different polymer-associated liposomes and PC-Chol liposomes containing the Rh-HPbetaCD complex, we also showed that the stability of vesicles could influence the skin permeability of CD-drug complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号