In this paper we prove a new theorem, and establish a new sufficient condition for periodicity of a more restricted and better classified third-order system obeying the following third-order ordinary differential equation.
x+g1(x)x+g2(x)x+g(x,x,t)=e(t)
In order to obtain conditions that guarantee the existence of periodic solutions and stable responses, the Schauder's fixed-point theorem has been implemented to prove the third-order periodic theorem for the differential equation.We show the applicability of the new third-order existence theorem by analyzing an independent suspension for conventional vehicles has been modeled as a non-linear vibration absorber with a non-linear third-order ordinary differential equation.Furthermore a numerical method has been developed for rapid convergence, and applied for a sample model. The correctness of sufficient conditions and solution algorithm has been shown with appropriate figures.  相似文献   

10.
Asymptotic Stability of Riemann Solutions for a Class of Multidimensional Systems of Conservation Laws with Viscosity     
Hermano Frid 《Archive for Rational Mechanics and Analysis》2006,181(1):177-199
We prove the asymptotic stability of two-state nonplanar Riemann solutions for a class of multidimensional hyperbolic systems of conservation laws when the initial data are perturbed and viscosity is added. The class considered here is those systems whose flux functions in different directions share a common complete system of Riemann invariants, the level surfaces of which are hyperplanes. In particular, we obtain the uniqueness of the self-similar L entropy solution of the two-state nonplanar Riemann problem. The asymptotic stability to which the main result refers is in the sense of the convergence as t→∞ in Lloc1 of the space of directions ξ = x/t. That is, the solution u(t, x) of the perturbed problem satisfies u(t, tξ)→R(ξ) as t→∞, in Lloc1(ℝn), where R(ξ) is the self-similar entropy solution of the corresponding two-state nonplanar Riemann problem.  相似文献   

11.
12.
Orientational anisotropy for Rouse eigenmodes during creep and recovery process     
Hiroshi?WatanabeEmail author  Tadashi?Inoue 《Rheologica Acta》2004,43(6):634-644
The Rouse model is a well established model for nonentangled polymer chains and its dynamic behavior under step strain has been fully analyzed in the literature. However, to the knowledge of the authors, no analysis has been made for the orientational anisotropy for the Rouse eigenmodes during the creep and creep recovery processes. For completeness of the analysis of the Rouse model, this anisotropy is calculated from the Rouse equation of motion. The calculation is simple and straightforward, but the result is intriguing in a sense that respective Rouse eigenmodes do not exhibit the single Voigt-type retardation. Instead, each Rouse eigenmode has a distribution in the retardation time. This behavior, reflecting the interplay among the Rouse eigenmodes of different orders under the constant stress condition, is quite different from the behavior under rate-controlled flow (where each eigenmode exhibits retardation/relaxation associated with a single characteristic time).List of abbreviations and symbols a Average segment size at equilibrium - Ap(t) Normalized orientational anisotropy for the p-th Rouse eigenmode defined by Eq. (14) - p-th Fourier component of the Brownian force (=x, y) - FB(n,t) Brownian force acting on n-th segment at time t - G(t) Relaxation modulus - J(t) Creep compliance - JR(t) Recoverable creep compliance - kB Boltzmann constant - N Segment number per Rouse chain - Qj(t) Orientational anisotropy of chain sections defined by Eq. (21) - r(n,t) Position of n-th segment of the chain at time t - S(n,t) Shear orientation function (S(n,t)=a–2<ux(n,t)uy(n,t)>) - T Absolute temperature - u(n,t) Tangential vector of n-th segment at time t (u = r/n) - V(r(n,t)) Flow velocity of the frictional medium at the position r(n,t) - Xp(t), Yp(t), and Zp(t) x-, y-, and z-components of the amplitudes of p-th Rouse eigenmode at time t - Strain rate being uniform throughout the system - Segmental friction coefficient - 0 Zero-shear viscosity - p Numerical coefficients determined from Eq. (25) - Gaussian spring constant ( = 3kBT/a2) - Number of Rouse chains per unit volume - (t) Shear stress of the system at time t - steady Shear stress in the steadily flowing state - R Longest viscoelastic relaxation time of the Rouse chain  相似文献   

13.
Extended Lagrangian formalism and the corresponding energy relations     
Djordje Mu&#x;icki 《European Journal of Mechanics - A/Solids》2004,23(6):975-991
In this paper an extended Lagrangian formalism for the rheonomic systems with the nonstationary constraints is formulated, with the aim to examine more completely the energy relations for such systems in any generalized coordinates, which in this case always refer to some moving frame of reference. Introducing new quantities, which change according to the law τa=φa(t), it is demonstrated that these quantities determine the position of this moving reference frame with respect to an immobile one. In the transition to the generalized coordinates qi they are taken as the additional generalized coordinates qa=τa, whose dependence on time is given a priori. In this way the position of the considered mechanical system relative to this immobile frame of reference is determined completely.Based on this and using the corresponding d'Alembert–Lagrange's principle, an extended system of the Lagrangian equations is obtained. It is demonstrated that they give the same equations of motion qi=qi(t) as in the usual Lagrangian formulation, but substantially different energy relations. Namely, in this formulation two different types of the energy change law dE/dt and the corresponding conservation laws are obtained, which are more general than in the usual formulation. So, under certain conditions the energy conservation law has the form E=T+U+P=const, where the last term, so-called rheonomic potential expresses the influence of the nonstationary constraints.Afterwards, a detailed analysis of the obtained results and their connection with the usual formulation of mechanics are given. It is demonstrated that so formulated energy relations are in full accordance with the corresponding ones in the usual vector formulation, when they are expressed in terms of the rheonomic potential. Finally, the obtained results are illustrated by several simple, but characteristic examples.  相似文献   

14.
15.
Collinear Central Configurations and Singular Surfaces in the Mass Space     
Yiming?LongEmail author  Shanzhong?Sun 《Archive for Rational Mechanics and Analysis》2004,173(2):151-167
For a given m=(m1,...,mn)(R+)n, let p and q(R3)n be two central configurations for m. Then we call p and q equivalent and write pq if they differ by an SO(3) rotation followed by a scalar multiplication as well as by a permutation of bodies. Denote by L(n,m) the set of equivalent classes of n-body collinear central configurations in R3 for any given mass vector m=(m1,...,mn)(R+)n. The main discovery in this paper is the existence of a union H3 of three non-empty algebraic surfaces in the mass half space (m1,m2m1,m3m2)R+×R2 besides the planes generated by equal masses, which decreases the number of collinear central configurations. The union H3 in R+×R 2 is explicitly constructed by three 6-degree homogeneous polynomials in three variables such that, for any mass vector m=(m1,m2,m3)(R+)3, # L(3,m)=3, if m1, m2, and m3 are mutually distinct and (m1,m2m1,m3m2)H3, # L(3,m)=2, if m1, m2, and m3 are mutually distinct and (m1,m2m1,m3m2)H3, # L(3,m)=2, if two of m1, m2, and m3 are equal but not the third, # L(3,m)=1, if m1=m2=m3. We give also a sharp upper bound on #L(n,m) for any positive mass vector m(R+)n.  相似文献   

16.
The Decay Rate and Higher Approximation of Mild Solutions to the Navier�CStokes Equations     
Jiayun Lin  Jian Zhai 《Journal of Mathematical Fluid Mechanics》2011,13(4):573-591
In this paper, we consider v(t) = u(t) − e tΔ u 0, where u(t) is the mild solution of the Navier–Stokes equations with the initial data u0 ? L2(\mathbb Rn)?Ln(\mathbb Rn){u_0\in L^2({\mathbb R}^n)\cap L^n({\mathbb R}^n)} . We shall show that the L 2 norm of D β v(t) decays like t-\frac |b|-1 2-\frac n4{t^{-\frac {|\beta|-1} {2}-\frac n4}} for |β| ≥ 0. Moreover, we will find the asymptotic profile u 1(t) such that the L 2 norm of D β (v(t) − u 1(t)) decays faster for 3 ≤ n ≤ 5 and |β| ≥ 0. Besides, higher-order asymptotics of v(t) are deduced under some assumptions.  相似文献   

17.
18.
ANALYSIS OF FINANCIAL DERIVATIVES BY MECHANICAL METHOD (Ⅱ)-BASIC EQUATION OF MARKET PRICE OF OPTION     
云天铨 《应用数学和力学(英文版)》2001,22(9):1004-1011
The basic equation of market price of option is formulated by taking assumptions based on the characteristics of option and similar method for formulating basic equations in solid mechanics: hv 0(t) = m 1 v 0 –1(t) – n 1 v 0(t) + F, where h, m 1, n 1, F are constants. The main assumptions are: the ups and downs of market price v 0(t) are determined by supply and demand of the market; the factors, such as the strike price, tenor, volatility, etc. that affect on v 0(t) are demonstrated by using proportion or inverse proportion relation; opposite rules are used for purchasing and selling respectively. The solutions of the basic equation under various conditions are found and are compared with the solution v f (t) of the basic equation of market price of futures. Furthermore the one-one correspondence between v f and v 0(t) is proved by implicit function theorem, which forms the theoretic base for study of v f affecting on the market price of option v 0(t).  相似文献   

19.
The effect of 1,3:2,4-<Emphasis Type="Italic">bis</Emphasis>-<Emphasis Type="Italic">O</Emphasis>-(<Emphasis Type="Italic">p</Emphasis>-methylbenzylidene)-<Emphasis Type="SmallCaps">d</Emphasis>-sorbitol (PDTS) on uniaxial elongational viscosity of polypropylene     
Hideyuki Uematsu  Yuji Aoki  Masataka Sugimoto  Takashi Taniguchi  Kiyohito Koyama 《Rheologica Acta》2008,47(2):237-242
We investigated the dynamic viscoelasticity and elongational viscosity of polypropylene (PP) containing 0.5 wt% of 1,3:2,4-bis-O-(p-methylbenzylidene)-d-sorbitol (PDTS). The PP/PDTS system exhibited a sol–gel transition (T gel) at 193 °C. The critical exponent n was nearly equal to 2/3, in agreement with the value predicted by a percolation theory. This critical gel is due to a three-dimensional network structure of PDTS crystals. The elongational viscosity behavior of neat PP followed the linear viscosity growth function + (t), where η + (t) is the shear stress growth function in the linear viscoelastic region. The elongational viscosity of the PP/PDTS system also followed the + (t) above T gel but did not follow the + (t) and exhibited strong strain-softening behavior below T gel. This strain softening can be attributed to breakage of the network structure of PDTS with a critical stress (σ c) of about 104 Pa.  相似文献   

20.
Crack size and speed interaction characteristics at micro-, meso- and macro-scale     
G. C. Sih  R. Jones 《Theoretical and Applied Fracture Mechanics》2003,39(2):127
The motivation to examine physical events at even smaller size scale arises from the development of use-specific materials where information transfer from one micro- or macro-element to another could be pre-assigned. There is the growing belief that the cumulated macroscopic experiences could be related to those at the lower size scales. Otherwise, there serves little purpose to examine material behavior at the different scale levels. Size scale, however, is intimately associated with time, not to mention temperature. As the size and time scales are shifted, different physical events may be identified. Dislocations with the movements of atoms, shear and rotation of clusters of molecules with inhomogeneity of polycrystals; and yielding/fracture with bulk properties of continuum specimens. Piecemeal results at the different scale levels are vulnerable to the possibility that they may be incompatible. The attention should therefore be focused on a single formulation that has the characteristics of multiscaling in size and time. The fact that the task may be overwhelmingly difficult cannot be used as an excuse for ignoring the fundamental aspects of the problem.Local nonlinearity is smeared into a small zone ahead of the crack. A “restrain stress” is introduced to also account for cracking at the meso-scale.The major emphasis is placed on developing a model that could exhibit the evolution characteristics of change in cracking behavior due to size and speed. Material inhomogeneity is assumed to favor self-similar crack growth although this may not always be the case. For relatively high restrain stress, the possible nucleation of micro-, meso- and macro-crack can be distinguished near the crack tip region. This distinction quickly disappears after a small distance after which scaling is no longer possible. This character prevails for Mode I and II cracking at different speeds. Special efforts are made to confine discussions within the framework of assumed conditions. To be kept in mind are the words of Isaac Newton in the Fourth Regula Philosophandi:
Men are often led into error by the love of simplicity which disposes us to reduce things to few principles, and to conceive a greater simplicity in nature than there really isWe may learn something of the way in which nature operates from fact and observation; but if we conclude that it operates in such a manner, only because to our understanding that operates to be the best and simplest manner, we shall always go wrong.”––Isaac Newton

Article Outline

1. Introduction
2. Elastodynamic equations and moving coordinates
3. Moving crack with restrain stress zone
3.1. Mode I crack
3.2. Mode II crack
4. Strain energy density function
4.1. Mode I
4.2. Mode II
5. Conclusions
Acknowledgements
References

1. Introduction

Even though experimental observations could reveal atomic scale events, in principle, analytical predictions of atomic movements fall short of expectation by a wide margin. Classical dislocation models have shown to be inadequate by large scale computational schemes such as embedded atoms and molecular dynamics. Lacking in particular is a connection between interatomic (10−8 cm) processes and behavior on mesoscopic scale (10−4 cm) [1]. Relating microstructure entities to macroscopic properties may represent too wide of a gap. A finer scale range may be needed to understand the underlying physics. Segmentation in terms of lineal dimensions of 10−6–10−5, 10−5–10−3 and 10−3–10−2 cm may be required. They are referred to, respectively, as the micro-, meso- and macro-scale. Even though the atomistic simulation approach has gained wide acceptance in recent times, continuum mechanics remains as a power tool for modeling material behavior. Validity of the discrete and continuum approach at the different length scales has been discussed in [2 and 3].Material microstructure inhomogeneities such as lattice configurations, phase topologies, grain sizes, etc. suggest an uneven distribution of stored energy per unit volume. The size of the unit volume could be selected arbitrarily such as micro-, meso- or macroscopic. When the localized energy concentration level overcomes the microstructure integrity, a change of microstructure morphology could take place. This can be accompanied by a corresponding redistribution of the energy in the system. A unique correspondence between the material microstructure and energy density function is thus assumed [4]. Effects of material structure can be reflected by continuum mechanics in the constitutive relations as in [5 and 6] for piezoelectric materials.In what follows, the energy density packed in a narrow region of prospective crack nucleation sites, the width of this region will be used as a characteristic length parameter for analyzing the behavior of moving cracks in materials at the atomic, micro-, meso- and macroscopic scale level. Nonlinearity is confined to a zone local to the crack tip. The degree of nonlinearity can be adjusted by using two parameters (σ0,ℓ) or (τ0,ℓ) where σ0 and τ0 are referred to, respectively, as the stresses of “restraint” owing to the normal and shear action over a local zone of length ℓ. The physical interpretation of σ0 and τ0 should be distinguished from the “cohesive stress” and “yield stress” initiated by Barenblatt and Dugdale although the mathematics may be similar. The former has been regarded as intrinsic to the material microstructure (or interatomic force) while the latter is triggered by macroscopic external loading. Strictly speaking, they are both affected by the material microstructure and loading. The difference is that their pre-dominance occurs at different scale levels. Henceforth, the term restrain stress will be adopted. For simplicity, the stresses σ0 and τ0 will be taken as constants over the segment ℓ and they apply to the meso-scale range as well.

2. Elastodynamic equations and moving coordinates

Navier’s equation of motion is given by(1)in which u and f are displacement and body force vector, respectively. Let the body force equal to zero, and introduce dilatational displacement potential φ(x,y,t) and the distortional displacement potential ψ(x,y,t) such that(2)u=φ+×ψThis yields two wave equations as(3)where 2 is the Laplacian in x and y while dot represents time differentiation. The dilatational and shear wave speeds are denoted by cd and cs, respectively.For a system of coordinates moving with velocity v in the x-direction,(4)ξ=xvt, η=ythe potential function φ(x,y,t) and ψ(x,y,t) can be simplified to(5)φ=φ(ξ,η), ψ=ψ(ξ,η)Eq. (3) can thus be rewritten as(6)in which(7)In view of Eqs. (7), φ and ψ would depend on (ξ,η) as(8)φ(ξ,η)=Re[Fd)], ψ(ξ,η)=Im[Gs)]The arguments ζj(j=d,s) are complex:(9)ζj=ξ+iαjη for j=d,sThe stress and displacement components in terms of φ and ψ are given as(10)uy(ξ,η)=−Im[αdFd)+Gs)]The stresses are(11)σxy(ξ,η)=−μ Im[2αdFd)+(1+αs2)Gs)]σxx(ξ,η)=μ Re[(1−αs2+2αd2)Fd)+2αsGs)]σyy(ξ,η)=−μ Re[(1+αs2)Fd)+2αsGs)]with μ being the shear modulus of elasticity.

3. Moving crack with restrain stress zone

The local stress zone is introduced to represent nonlinearity; it can be normal or shear depending on whether the crack is under Mode I or Mode II loading. For Mode I, a uniform stress σ is applied at infinity while τ is for Mode II. The corresponding stress in the local zone of length ℓ are σ0 are τ0. They are shown in Fig. 1 for Mode I and Fig. 2 for Mode II. Assumed are the conditions in the Yoffé crack model. What occurs as positive at the leading crack edge, the negative is assumed to prevail at the trailing edge.  相似文献   

  首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Phase portraits and bifurcations of the non-linear oscillator:
The non-linear oscillator + αx + γx2x + βx + δx3 = 0 is studied using the methods of differentiable dynamics to obtain qualitative behaviour. The case x, β<0; γ, δ> 0 is considered in some detail; it has physical relevance as a simple model in certain now-induced structural vibration problems in which the structural non-linearities act to maintain overall stability. The presence of local and global bifurcations is detected and their physical significance discussed.  相似文献   

2.
Stability of limit cycles and bifurcations of generalized van der Pol oscillators:
The limit cycles of the van der Pol oscillator
, for B > 0, are studied in first-order approximation, using the Jacobian elliptic functions with the method of harmonic balance. The transitory motion, and in consequence the limit cycles and their stability are also studied in an approximate quantitative way with a generalized method of the slowly varying amplitude and phase. The bifurcations of these non-linear oscillators are studied using the methods of differentiable dynamics to obtain the qualitative behaviour. Quantitative values for the radius, frequency and energy of the limit cycles are given. The presence and stability of zero, one, or two limit cycles depend on the parameters zi. The presence of bifurcations depends on zi and A.  相似文献   

3.
Natural Lagrangian systems (T,Π) on R 2 described by the equation are considered, where is a positive definite quadratic form in and Π(q) has a critical point at 0. It is constructively proved that there exist a C potential energy Π and two C kinetic energies T and such that the equilibrium q(t)≡ 0 is stable for the system (T,Π) and unstable for the system . Equivalently, it is established that for C natural systems the kinetic energy can influence the stability. In the analytic category this is not true. Accepted: October 20, 1999  相似文献   

4.
The equations of the restricted three-body problem describe the motion of a massless particle under the influence of two primaries of masses 1 −μ and μ, 0≤μ≤ 1/2, that circle each other with period equal to 2π. When μ=0, the problem admits orbits for the massless particle that are ellipses of eccentricity e with the primary of mass 1 located at one of the focii. If the period is a rational multiple of 2π, denoted 2π p/q, some of these orbits perturb to periodic motions for μ > 0. For typical values of e and p/q, two resonant periodic motions are obtained for μ > 0. We show that the characteristic multipliers of both these motions are given by expressions of the form in the limit μ→ 0. The coefficient C(e,p,q) is analytic in e at e=0 and C(e,p,q)=O(e|p-q|). The coefficients in front of e|p-q|, obtained when C(e,p,q) is expanded in powers of e for the two resonant periodic motions, sum to zero. Typically, if one of the two resonant periodic motions is of elliptic type the other is of hyperbolic type. We give similar results for retrograde periodic motions and discuss periodic motions that nearly collide with the primary of mass 1 −μ.  相似文献   

5.
Wafo Soh  C.  Mahomed  F. M.  Qu  C. 《Nonlinear dynamics》2002,28(2):213-230
Using Lie's classification of irreducible contact transformations in thecomplex plane, we show thata third-order scalar ordinary differential equation (ODE)admits an irreducible contact symmetry algebra if and only if it is transformableto q (3)=0 via a local contact transformation. This result coupled with the classification of third-order ODEs with respect to point symmetriesprovide an explanation of symmetry breaking for third-order ODEs. Indeed, ingeneral, the point symmetry algebra of a third-order ODE is not asubalgebra of the seven-dimensional point symmetry algebra of q (3)=0.However, the contact symmetry algebra of any third-order ODE, except forthird-order linear ODEs with four- and five-dimensional pointsymmetry algebras, is shown to be a subalgebra of the ten-dimensional contact symmetryalgebra of q (3)==0. We also show that a fourth-orderscalar ODE cannot admit an irreducible contact symmetry algebra. Furthermore, weclassify completely scalar nth-order (n5) ODEs which admitnontrivial contact symmetry algebras.  相似文献   

6.
We consider non-linear bifurcation problems for elastic structures modeled by the operator equation F[w;α]=0 where F:X×RkY,X,Y are Banach spaces and XY. We focus attention on problems whose bifurcation equations are of the form
fi12;λ,μ)=(aiμ+biλ)αi+piαi3+qiαij=1,jikαj+12ihi(λ,μ;α12,…αk) i=1,2,…k
which emanates from bifurcation problems for which the linearization of F is Fredholm operators of index 0. Under the assumption of F being odd we prove an important theorem of existence of secondary bifurcation. Under this same assumption we prove a symmetry condition for the reduced equations and consequently we got an existence result for secondary bifurcation. We also include a stability analysis of the bifurcating solutions.  相似文献   

7.
Conditions are derived for the linearizability via invertible maps of a system of n second-order quadratically semi-linear differential equations that have no lower degree lower order terms in them, i.e., for the symmetry Lie algebra of the system to be sl(n + 2, ℝ). These conditions are stated in terms of the coefficients of the equations and hence provide simple invariant criteria for such systems to admit the maximal symmetry algebra. We provide the explicit procedure for the construction of the linearizing transformation. In the simplest case of a system of two second-order quadratically semi-linear equations without the linear terms in the derivatives, we also provide the construction of the linearizing point transformation using complex variables. Examples are given to illustrate our approach for two- and three-dimensional systems.  相似文献   

8.
The field measurements and numerical results for intermittent flow regime in a sandy soil show that the time distributions of the soil water flux q(z, t), and the soil water content θ(z, t)at various depths are periodic in nature, where t is time and z is the depth (i.e., at the surface z = 0 and at depths z = − 5, − 10, − 15 cm, etc). The period of q(z, t) and θ(z, t) variations are generally determined by the sum of the duration of pulse and the duration between the initiation of two consecutive pulses of water at the soil surface. Fourier series models have been given for q(z, t) and θ(z, t) variations. The predicted Fourier results for these variations have been compared with the experimentally verified numerical results—designated as observed values. The results show that the amplitudes of these variations were damped exponentially with depth, and the phase shift increased linearly with depth.  相似文献   

9.
Recently a third-order existence theorem has been proven to establish the sufficient conditions of periodicity for the most general third-order ordinary differential equation
x+f(t,x,x,x)=0
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号